Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite from September 25 fireball event recovered and presented

20.10.2009
When Tony Garchinski heard a loud crash just after 9 p.m. on Friday, September 25 he didn’t think much of it. That is, until he awoke the next morning to find the windshield of his mom’s Nissan Pathfinder with a huge crack in it.

Making note of the ‘unusual’ rocks he later found on the car’s hood, Garchinski chalked the incident up to vandalism and filed a police report.

It wasn’t until two weeks later that his mother, Yvonne Garchinski, heard media reports that researchers from The University of Western Ontario were searching West Grimsby, Ont. for possible fragments of a freshly fallen meteorite. The Garchinskis realized who the real culprit was in the case of the broken windshield -- or more specifically, what.

The ‘what’ was a 46-gram (approx. the size of a golf ball) completely fusion-crusted (melted exterior) fragment of an ‘ordinary chondrite’ meteorite. Chondrites are arguably the most important type of meteorite because they are the least processed of meteorites and provide a window into the material which formed the early solar system.

The meteorite is estimated to be 4.6 billion years old.

Western Associate Professor Peter Brown, an expert in the study of meteors and meteorite falls, and Phil McCausland, a postdoctoral fellow at Western’s Centre for Planetary Science & Exploration, presented the found meteorite to the media today at the Garchinski home in Grimsby, with the family on hand to tell their remarkable story.

McCausland has been leading the university’s ground search since seven ‘all-sky’ cameras of Western’s Southern Ontario Meteor Network (SOMN) captured rare video footage of the meteor event on September 25.

http://aquarid.physics.uwo.ca/research/fireball/events/25sept2009/

“Having both the video and the sample is golden because we get the dynamic information and the orbital direction from the video, and by having recovered material on the ground, we can complete the picture. We can take a rock that we now have in hand and we can study it in the best laboratories in the world and we can put it back into its solar system context. We can put it back into where it came from,” explains McCausland. “In all of history, only about a dozen meteorite falls have that kind of record.”

Brown says, “Scientifically, it’s equivalent to a sample return mission, which is sending a spacecraft out to a known location in the solar system and bringing back a sample. In this case though, the sample comes to us. We don’t have to spend huge sums of money to send a spacecraft to get the sample.

“We’ve worked out the orbit, where it came from, so it becomes a material within context. It’s like a geologist who can pick up a rock which may be interesting, but if you know where it came from, that context, it means so much more. Most meteorites - we don’t have the context. This one we do.”

Yvonne Garchinski has loaned the ‘pristine’ meteorite sample to Western but it remains her property as meteorites found in Canada belong to the owner of the land upon which they are discovered.

The Western-led search continues in West Grimsby and both Brown and McCausland believe more meteorite fragments will be found. In fact, the Garchinski property is a mere 200 meters off the fall line of the meteorite the Western Meteor Physics Group calculated using data from its video, radar and sound detection systems.

Meteorites may best be recognized by their dark and scalloped exterior, and are usually denser than normal rock and will often attract a fridge magnet due to their metal content. Meteorites may be found in a small hole produced by their fall into soil.

Meteorites are not dangerous, but any recovered meteorites should be placed in a clean plastic bag or container and be handled as little as possible to preserve their scientific information.

If you believe you have recovered a possible meteorite from the Sept. 25th fireball, the researchers ask that you please contact Phil McCausland at 519-661-2111, ext. 87985 or on his cell at 519-694-3323.

For interviews with the scientists and the Garchinski family, images of the recovered meteorite or images from today’s media conference, please contact Jeff Renaud, Senior Media Relations Officer on his cell at 519-520-7281.

Jeff Renaud | EurekAlert!
Further information:
http://www.uwo.ca

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>