Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury contracted more than prior estimates, evidence shows

17.03.2014

New evidence gathered by NASA's MESSENGER spacecraft at Mercury indicates the planet closest to the sun has shrunk up to 7 kilometers in radius over the past 4 billion years, much more than earlier estimates.

The new finding, published in the journal Nature Geoscience Sunday, March 16, solves an apparent enigma about Mercury's evolution.

Older images of surface features indicated that, despite cooling over its lifetime, the rocky planet had barely shrunk at all. But modeling of the planet's formation and aging could not explain that finding.

Now, Paul K. Byrne and Christian Klimczak at the Carnegie Institution of Washington have led a team that used MESSENGER's detailed images and topographic data to build a comprehensive map of tectonic features. That map suggests Mercury shrunk substantially as it cooled, as rock and metal that comprise its interior are expected to.

"With MESSENGER, we have now obtained images of the entire planet at high resolution and, crucially, at different angles to the sun that show features Mariner 10 could not in the 1970s," said Steven A. Hauck, II, a professor of planetary sciences at Case Western Reserve University and the paper's co-author.

Mariner 10, the first spacecraft sent to explore Mercury, gathered images and data over just 45% of the surface during three flybys in 1974 and 1975. MESSENGER, which launched in 2004 and was inserted into orbit in 2011, continues collecting scientific data, completing its 2,900th orbit of Mercury later this month.

Mercury's surface differs from Earth's in that its outer shell, called the lithosphere, is made up of one tectonic plate instead of multiple plates.

To help gauge how the planet may have shrunk, the researchers looked at tectonic features, called lobate scarps and wrinkle ridges, which result from interior cooling and surface compression. The features resemble long ribbons from above, ranging from 5 to more than 550 miles long.

Lobate scarps are cliffs caused by thrust faults that have broken the surface and reach up to nearly 2 miles high. Wrinkle ridges are caused by faults that don't extend as deep and tend to have lower relief. Surface materials from one side of the fault ramp up and fold over, forming a ridge. The scientists mapped a total of 5,934 of the tectonic features.

The scarps and ridges have much the same effect as a tailor making a series of tucks to take in the waist of a pair of pants.

With the new data, the researchers were able to see a greater number of these faults and estimate the shortening across broad sections of the surface and thus estimate the decrease in the planet's radius.

They estimate the planet has contracted between 4.6 and 7 kilometers in radius.

"This is significantly greater than the 1 to maybe 2 kilometers reported earlier on the basis of Mariner 10 data," Hauck said.

And, importantly, he said, models built on the main heat-producing elements in planetary interiors, as detected by MESSENGER, support contraction in the range now documented.

One striking aspect of the form and distribution of surface tectonic features on Mercury is that they are largely consistent with some early explanations about the features of Earth's surface, before the theory of plate tectonics made them obsolete—at least for Earth, Hauck said.

So far, Earth is the only planet known to have tectonic plates instead of a single, outer shell.

The findings, therefore, can provide limits and a framework to understand how planets cool—their thermal, tectonic and volcanic history. So, by looking at Mercury, scientists learn not just about planets in our solar system, but about the increasing number of rocky planets being found around other stars.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

Further reports about: Mercury Mercury's Evolution Reserve built estimates evidence findings images materials pair topographic data

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>