Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting ice sheets now largest contributor to sea level rise

09.03.2011
The Greenland and Antarctic ice sheets are losing mass at an accelerating pace, according to a new study.

The findings of the study – the longest to date of changes in polar ice sheet mass – suggest these ice sheets are overtaking ice loss from Earth's mountain glaciers and ice caps to become the dominant contributor to global sea level rise, much sooner than model forecasts have predicted. The results of the study will be published this month in Geophysical Research Letters, a journal of the American Geophysical Union.

The nearly 20-year study reveals that in 2006, a year in which comparable results for mass loss in mountain glaciers and ice caps are available from a separate study conducted using other methods, the Greenland and Antarctic ice sheets lost a combined mass of 475 gigatonnes a year on average. That's enough to raise global sea level by an average of 1.3 millimeters (.05 inches) a year. (A gigatonne is one billion metric tons, or more than 2.2 trillion pounds.) Ice sheets are defined as being larger than 50,000 square kilometers, or 20,000 square miles, and only exist in Greenland and Antarctica while ice caps are areas smaller than 50,000 square km.

The pace at which the polar ice sheets are losing mass was found to be accelerating rapidly. Each year over the course of the study, the two ice sheets lost a combined average of 36.3 gigatonnes more than they did the year before. In comparison, the 2006 study of mountain glaciers and ice caps estimated their loss at 402 gigatonnes a year on average, with a year-over-year acceleration rate three times smaller than that of the ice sheets.

"That ice sheets will dominate future sea level rise is not surprising -- they hold a lot more ice mass than mountain glaciers," said lead author Eric Rignot, of NASA's Jet Propulsion Laboratory, Pasadena, California, and the University of California, Irvine. "What is surprising is this increased contribution by the ice sheets is already happening. If present trends continue, sea level is likely to be significantly higher than levels projected by the United Nations Intergovernmental Panel on Climate Change in 2007. Our study helps reduce uncertainties in near-term projections of sea level rise."

Rignot's team combined nearly two decades (1992-2009) of monthly satellite measurements with advanced regional atmospheric climate model data to examine changes in ice sheet mass and trends in acceleration of ice loss.

The study compared two independent measurement techniques. The first characterized the difference between two sets of data: interferometric synthetic aperture radar data from European, Canadian and Japanese satellites and radio echo soundings, which were used to measure ice exiting the ice sheets; and regional atmospheric climate model data from Utrecht University, The Netherlands, used to quantify ice being added to the ice sheets. The other technique used eight years of data from the NASA/German Aerospace Center's Gravity Recovery and Climate Experiment (Grace) satellites, which track minute changes in Earth's gravity field due to changes in Earth's mass distribution, including ice movement.

The team reconciled the differences between techniques and found them to be in agreement, both for total amount and rate of mass loss, over their data sets' eight-year overlapping period. This validated the data sets, establishing a consistent record of ice mass changes since 1992.

The team found that for each year over the 18-year study, the Greenland ice sheet lost mass faster than it did the year before, by an average of 21.9 gigatonnes a year. In Antarctica, the year-over-year speedup in ice mass lost averaged 14.5 gigatonnes.

"These are two totally independent techniques, so it is a major achievement that the results agree so well," said co-author Isabella Velicogna, also jointly with JPL and UC Irvine. "It demonstrates the tremendous progress that's being made in estimating how much ice the ice sheets are gaining and losing, and in analyzing Grace's time-variable gravity data."

The authors conclude that if current ice sheet melting rates continue for the next four decades, their cumulative loss could raise sea level by 15 centimeters (5.9 inches) by 2050. When this is added to the predicted sea level contribution of 8 centimeters (3.1 inches) from glacial ice caps and 9 centimeters (3.5 inches) from ocean thermal expansion, total sea level rise could reach 32 centimeters (12.6 inches). While this provides one indication of the potential contribution ice sheets could make to sea level in the coming century, the authors caution that considerable uncertainties remain in estimating future ice loss acceleration.

Other participating institutions include the Institute for Marine and Atmospheric Research, Utrecht University, The Netherlands; and the National Center for Atmospheric Research, Boulder, Colorado.

More on Grace is online at http://www.csr.utexas.edu/grace/ and http://grace.jpl.nasa.gov/.

Title:
“Acceleration of the contribution of the Greenland and Antarctic Ice Sheets to sea level rise”
Authors:
E. Rignot, I. Velicogna: University of California, Irvine, California and Jet Propulsion Laboratory, Pasadena, California, USA;

M. R. van den Broeke: Institute for Marine and Atmospheric Research, Utrecht University, the Netherlands;

A. Monaghan: National Center for Atmospheric Research, Boulder, Colorado, USA;

J. Lenaerts: Institute for Marine and Atmospheric Research, Utrecht University, the Netherlands.

Contact information for the authors:
Eric Rignot, Professor, Earth System Science, School of Physical Sciences
Phone: +1 (949) 824-3739, +1 (818) 354-1640; Email: erignot@uci.edu

Peter Weiss | American Geophysical Union
Further information:
http://grace.jpl.nasa.gov
http://www.csr.utexas.edu/grace/

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>