Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Melting glaciers reveal future alpine world

In a hundred years trees may be growing where there are now glaciers. The warm climate of the last few years has caused dramatic melting of glaciers in the Swedish mountains.

Remains of trees that have been hidden for thousands of years have been uncovered. They indicate that 13,000 years ago there were trees where there are now glaciers. The climate may have been as much as 3.5 degrees warmer than now. In other words, this can happen again, according to Lisa Öberg, a doctoral candidate at Mid Sweden University in a new study.

Caption: Subfossil of birch, 9,060 years old, shows how high the treeline has been in the Swedish mountains. Photo: Leif Kullman

In her study Lisa Öberg shows that soon after the inland ice receded, about 13,100 years ago, pines colonized high altitudes in the mountains. A few thousand years later there was a massive invasion of both pines and birches at levels up to 600 m higher than today’s treeline. Subsequently the treeline for both pine and birch was gradually lowered as a result of ever-lower temperatures, until the climate made it impossible for trees to grow and glaciers began to form, about 4,400 years ago.

“We used to think that the glaciers were remnants of the latest ice age. The fact that trees grew there so recently shows that the glaciers are no older than 4,400 years,” says Lisa Öberg.

Lisa Öberg’s study is based on finds of tree remains from Helags-Sylarna, Tärna, and Abisko. The age of the tree remains shows that the climate warming of the last century is unique in a perspective of several thousands of years. If any melting corresponding to what is happening today had taken place previously, the wood would probably have been degraded.

“The knowledge we gain by exploiting this unique opportunity is important for our understanding of how alpine plant growth may be impacted by the future climate,” says Lisa Öberg.

The fact that nearly 10,000 years ago birches grew 600 m above today’s treeline in a climate that was some 3.5 degrees warmer than today shows that trees ought to be able to grow at the same level again, if the temperature rises a few more degrees.

“By studying where the treeline ran in the past, we can see what it can be like in the future if it continues to get warmer,” says Lisa Öberg.

Article “Recent Glacier Recession – a New Source of Postglacial Treeline and Climate History in the Swedish Scandes” by Lisa Öberg & Leif Kullman

Questions can be posed to:
Lisa Öberg, fil.lic./doctoral candidate, mobile: +46 (0)76-8230068

Helena Lindh | idw
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>