Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Melting and refreezing of deep Greenland ice speeds flow to sea, study says


Findings may shift understanding of ice sheet behavior

Beneath the barren whiteness of Greenland, a mysterious world has popped into view. Using ice-penetrating radar, researchers have discovered ragged blocks of ice as tall as city skyscrapers and as wide as the island of Manhattan at the very bottom of the ice sheet, apparently formed as water beneath the ice refreezes and warps the surrounding ice upwards.

Melting and refreezing at the bottom of ice sheets warps the layer-cake structure above, as seen in this radar image from Greenland.

Credit: Mike Wolovick

The newly revealed forms may help scientists understand more about how ice sheets behave and how they will respond to a warming climate. The results are published in the latest issue of Nature Geoscience.

"We see more of these features where the ice sheet starts to go fast," said the study's lead author, Robin Bell, a geophysicist at Columbia University's Lamont-Doherty Earth Observatory. "We think the refreezing process uplifts, distorts and warms the ice above, making it softer and easier to flow."

The structures cover about a tenth of northern Greenland, the researchers estimate, becoming bigger and more common as the ice sheet narrows into ice streams, or glaciers, headed for the sea. As meltwater at the bottom refreezes over hundreds to thousands of years, the researchers believe it radiates heat into the surrounding ice sheet, making it pick up its pace as the ice becomes softer and flows more easily.

Since the 1970s, and as recently as 1998, researchers flying over the region mistook radar images of these structures for hills. Newer instruments flown during NASA's IceBridge campaign to map ice loss at both poles found the hills to be made of ice instead of rock. Bell, who had discovered similar ice features at the base of the East Antarctic ice sheet, recognized them immediately.

While mapping Antarctica's ice-covered Gamburtsev Mountains in 2008 and 2009, Bell and colleagues discovered extensive melting and refreezing along ridges and steep valley walls of the range. Though researchers had long known that pressure and friction can melt the bottom of ice sheets, no one knew that refreezing water could deform the layer-cake structure above. In a 2011 study in Science, Bell and colleagues proposed that ice sheets can grow from the bottom up, not just from the top-down accumulation of falling snow.

The current study builds on the findings from Antarctica by linking the bottom features to faster ice sheet flow. The researchers looked at Petermann Glacier in the north of Greenland, which made headlines in 2010 when a 100-square mile chunk of ice slipped into the sea. They discovered that Petermann Glacier is sweeping a dozen large features with it toward the coast as it funnels off the ice sheet; one feature sits where satellite data has shown part of the glacier racing twice as fast as nearby ice. The researchers suggest that the refreeze process is influencing the glacier's advance hundreds of miles from where Petermann floats onto the sea.

"Overall, these observations suggest that basal freeze-on is a key control on the large-scale flow of Petermann Glacier, a possibility that has not been explored previously," writes University of Texas researcher Joseph MacGregor in the same issue of Nature Geoscience.

Greenland's glaciers appear to be moving more rapidly toward the sea as climate warms but it remains unclear how the refreeze process will influence this trend, the researchers said.

They expected to find bottom features in the ice sheet's interior, as they did in Antarctica, but did not expect to see features at the edges, where lakes form and rivers flow over the surface, they said. Water from those lakes and rivers appears to fall through crevasses and other holes in the ice to reach the base of the ice sheet, where some of it apparently refreezes. Their discovery indicates that refreezing and deformation at the base of the ice sheet may be far more widespread than previously thought. Bell and her colleagues believe that similar features may come to light as other parts of Greenland and Antarctica are studied in closer detail.

Flying over northern Greenland during the 2011 Ice Bridge season, Kirsty Tinto, a geophysicist at Lamont-Doherty, sat up straight when the radar images began to reveal a deformed layer-cake structure. "When you're flying over this flat, white landscape people almost fall asleep it's so boring—layer cake, layer cake, layer cake," said Tinto, a study coauthor. "But then suddenly these things appear on the screen. It's very exciting. You get a sense of these invisible processes happening underneath."


The study was funded by the U.S. National Science Foundation and NASA. Other authors: Indrani Das, Michael Wolovick, Winnie Chu, Timothy Creyts, Nicholas Frearson, Abdulhakim Abdi, all of Lamont-Doherty, and John Paden of Kansas University.

Copies of the paper, "Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base," are available from the authors or from Nature. UK: US:

Scientist contacts:

Robin Bell 845-365-8827

Kirsty Tinto 845-365-8598

More information: Kim Martineau, Science Writer, The Earth Institute 646-717-0134

The Earth Institute, Columbia University mobilizes the sciences, education and public policy to achieve a sustainable earth.

Lamont-Doherty Earth Observatory seeks fundamental knowledge about the origin, evolution and future of the natural world. Its scientists study the planet from its deepest interior to the outer reaches of its atmosphere, on every continent and in every ocean, providing a rational basis for the difficult choices facing humanity.

Kim Martineau | Eurek Alert!

Further reports about: Antarctic Antarctica Earth Glacier Greenland Melting structures

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>