Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians Network to Tackle Climate Change Issues

28.09.2010
Researchers from leading U.S. universities will tackle mathematical problems related to climate change research via a new project funded by the National Science Foundation.

The Mathematics and Climate Change Network is led by the University of North Carolina at Chapel Hill, with the UNC Renaissance Computing Institute (RENCI) providing logistical support and cyber tools to support the creation of a virtual organization spanning the United States. The foundation is providing $1 million annually for five years to support the project.

Representatives of the member institutions are in Chapel Hill Thursday and Friday (Sept. 23-24) for a kickoff meeting at RENCI headquarters.

“The math community is not being properly involved in climate change research,” said Chris Jones, Ph.D., Bill Guthridge Distinguished Professor of Mathematics in the UNC College of Arts and Sciences and principal investigator for the project. “But the fact is, we have only one Earth, so experiments must be done using computer models.”

The network includes faculty members, postdoctoral fellows and students at 13 institutions: UNC-Chapel Hill; UNC Asheville and RENCI at UNC Asheville; Bowdoin College; Cal Poly San Luis Obispo; Arizona State, New York and Northwestern universities; and the universities of California at Berkeley, Chicago, Minnesota, Utah, Vermont and Washington.

The network’s mathematicians will work closely with climate scientists at research centers such as the National Center for Atmospheric Research, the National Climatic Data Center, Los Alamos National Laboratory and Oak Ridge National Laboratory.

The network will tackle problems such as optimizing existing climate models so they more accurately describe climate processes and future climatic conditions, and using mathematical formulas to understand microstructures in natural systems, such as the physical properties of sea ice, its stability and how rapidly it will melt.

Mathematicians will also look at historical changes in climate including sudden, dramatic changes such as the “little ice age” of the 16th to 19th centuries. Sudden, abrupt changes are common in the world of mathematics, Jones said, and studying disruptive climate events will help scientists understand the tipping points that trigger these changes.

Over time, Jones said he hoped the project would make mathematics as integral to climate research as it is to the physics and biology research communities.

“Our charge as mathematicians is not so much to go out and solve the climate change problem, but to develop the mathematical ideas and tools that will be crucial to climate scientists in their work to understand and predict climate changes,” he said.

RENCI website: http://www.renci.org.

RENCI contact: Karen Green, (919) 445-9648, kgreen@renci.org

Karen Green | Newswise Science News
Further information:
http://www.renci.org

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>