Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mathematicians Network to Tackle Climate Change Issues

Researchers from leading U.S. universities will tackle mathematical problems related to climate change research via a new project funded by the National Science Foundation.

The Mathematics and Climate Change Network is led by the University of North Carolina at Chapel Hill, with the UNC Renaissance Computing Institute (RENCI) providing logistical support and cyber tools to support the creation of a virtual organization spanning the United States. The foundation is providing $1 million annually for five years to support the project.

Representatives of the member institutions are in Chapel Hill Thursday and Friday (Sept. 23-24) for a kickoff meeting at RENCI headquarters.

“The math community is not being properly involved in climate change research,” said Chris Jones, Ph.D., Bill Guthridge Distinguished Professor of Mathematics in the UNC College of Arts and Sciences and principal investigator for the project. “But the fact is, we have only one Earth, so experiments must be done using computer models.”

The network includes faculty members, postdoctoral fellows and students at 13 institutions: UNC-Chapel Hill; UNC Asheville and RENCI at UNC Asheville; Bowdoin College; Cal Poly San Luis Obispo; Arizona State, New York and Northwestern universities; and the universities of California at Berkeley, Chicago, Minnesota, Utah, Vermont and Washington.

The network’s mathematicians will work closely with climate scientists at research centers such as the National Center for Atmospheric Research, the National Climatic Data Center, Los Alamos National Laboratory and Oak Ridge National Laboratory.

The network will tackle problems such as optimizing existing climate models so they more accurately describe climate processes and future climatic conditions, and using mathematical formulas to understand microstructures in natural systems, such as the physical properties of sea ice, its stability and how rapidly it will melt.

Mathematicians will also look at historical changes in climate including sudden, dramatic changes such as the “little ice age” of the 16th to 19th centuries. Sudden, abrupt changes are common in the world of mathematics, Jones said, and studying disruptive climate events will help scientists understand the tipping points that trigger these changes.

Over time, Jones said he hoped the project would make mathematics as integral to climate research as it is to the physics and biology research communities.

“Our charge as mathematicians is not so much to go out and solve the climate change problem, but to develop the mathematical ideas and tools that will be crucial to climate scientists in their work to understand and predict climate changes,” he said.

RENCI website:

RENCI contact: Karen Green, (919) 445-9648,

Karen Green | Newswise Science News
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>