Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Massive debris pile reveals risk of huge tsunamis in Hawaii


A mass of marine debris discovered in a giant sinkhole in the Hawaiian islands provides evidence that at least one mammoth tsunami, larger than any in Hawaii’s recorded history, has struck the islands, and that a similar disaster could happen again, new research finds.

Scientists are reporting that a wall of water up to nine meters (30 feet) high surged onto Hawaiian shores about 500 years ago. A 9.0-magnitude earthquake off the coast of the Aleutian Islands triggered the mighty wave, which left behind up to nine shipping containers worth of ocean sediment in a sinkhole on the island of Kauai.

The researchers simulated earthquakes with magnitudes between 9.0 and 9.6 originating at different locations along the Aleutian-Alaska subduction zone, and found that the unique geometry of the eastern Aleutians would direct the largest post-earthquake tsunami energy directly toward the Hawaiian Islands. The red circles are centered on Kaua‘i and encircle the Big Island.

Credit: Rhett Butler

The tsunami was at least three times the size of a 1946 tsunami that was the most destructive in Hawaii’s recent history, according to the new study that examined deposits believed to have come from the extreme event and used models to show how it might have occurred. Tsunamis of this magnitude are rare events.

An earthquake in the eastern Aleutian Trench big enough to generate a massive tsunami like the one in the study is expected to occur once every thousand years, meaning that there is a 0.1 percent chance of it happening in any given year – the same probability as the 2011 Tohoku earthquake that struck Japan, according to Gerard Fryer, a geophysicist at the Pacific Tsunami Warning Center in Ewa Beach, Hawaii.

Nevertheless, the new research has prompted Honolulu officials to revise their tsunami evacuation maps to account for the possibility of an extreme tsunami hitting the county of nearly 1 million people. The new maps would more than double the area of evacuation in some locations, according to Fryer.

“You’re going to have great earthquakes on planet Earth, and you’re going to have great tsunamis,” said Rhett Butler, a geophysicist at the University of Hawaii at Manoa and lead author of the new study published online in Geophysical Research Letters, a journal of the American Geophysical Union. “People have to at least appreciate that the possibility is there.”

Hawaiians have told stories about colossal tsunamis hitting the islands for generations, but possible evidence of these massive waves was only first detected in the late 1990s when David Burney, a paleoecologist at the National Tropical Botanical Garden in Kalaheo, was excavating the Makauwahi sinkhole, a collapsed limestone cave on the south shore of Kauai.

Two meters (six and a half feet) below the surface he encountered a layer of sediment marked by coral fragments, mollusk shells and coarse beach sand that could only have come from the sea. But the mouth of the sinkhole was separated from the shore by 100 meters (328 feet) of land and seven-meter (23-foot) high walls. Burney speculated that the deposit could have been left by a massive tsunami, but he was unable to verify the claim.

The deposits remained a mystery until the Tohoku earthquake hit Japan in 2011. It caused water to surge inland like a rapidly rising tide, reaching heights up to 39 meters (128 feet) above the normal sea level. After that tsunami deluged the island nation, scientists began to question Hawaii’s current tsunami evacuation maps. The maps are based largely upon the 1946 tsunami, which followed a magnitude 8.6 earthquake in the Aleutian Islands and caused water to rise only two and a half meters (8 feet) up the side of the Makauwahi sinkhole.

“[The Japan earthquake] was bigger than almost any seismologist thought possible,” said Butler.  “Seeing [on live TV] the devastation it caused, I began to wonder, did we get it right in Hawaii? Are our evacuation zones the correct size?”

To find out, the study’s authors used a wave model to predict how a tsunami would flood the Kauai coastline. They simulated earthquakes with magnitudes between 9.0 and 9.6 originating at different locations along the Aleutian-Alaska subduction zone, a 3,400-kilometer (2,113-mile) long ocean trench stretching along the southern coast of Alaska and the Aleutian Islands where the Pacific tectonic plate is slipping under the North American plate.

The researchers found that the unique geometry of the eastern Aleutians would direct the largest post-earthquake tsunami energy directly toward the Hawaiian Islands. Inundation models showed that an earthquake with a magnitude greater than 9.0 in just the right spot could produce water levels on the shore that reached eight to nine meters (26 to 30 feet) high, easily overtopping the Makauwahi sinkhole wall where the ocean deposits were found.

The authors used radiocarbon-dated marine deposits from Sedanka Island off the coast of Alaska and along the west coasts of Canada and the United States dating back to the same time period as the Makauwahi deposit to show that all three sediments could have come from the same tsunami and provide some evidence that the event occurred, according to the study.

“[The authors] stitched together geological evidence, anthropological information as well as geophysical modeling to put together this story that is tantalizing for a geologist but it’s frightening for people in Hawaii,” said Robert Witter, a geologist at the U.S. Geological Survey in Anchorage, Alaska who was not involved in the study.

According to Witter, it is possible that a massive tsunami hit Hawaii hundreds of years ago, based on the deposits found in the Kauai sinkhole, but he said it is difficult to determine if all three locations experienced the same event based on radiocarbon dating alone.

Radiocarbon dating only gives scientists a rough estimate of the age of a deposit, he said.  All three locations offer evidence of a great tsunami occurring between 350 and 575 years ago, but it is hard to know if it was the same tsunami or ones that occurred hundreds of years apart.

“An important next thing to do is to look for evidence for tsunamis elsewhere in the Hawaiian island chain,” said Witter.

Fryer, of the Pacific Tsunami Warning Center, is confident that more evidence of the massive tsunami will be found, confirming that events of this magnitude have rocked the island chain in the not-so-distant past.

“I’ve seen the deposit,” said Fryer, who was not involved in the study. “I’m absolutely convinced it’s a tsunami, and it had to be a monster tsunami.”

Fryer is so convinced that he has worked with the city and county of Honolulu to update their tsunami evacuation maps to include the possibility of a massive tsunami the size of the one detailed in the new study hitting the islands. The county hopes to have the new maps distributed to residents by the end of the year, he said.

“We prepared ourselves for the worst tsunami that’s likely to happen in one hundred years,” Fryer said of the current tsunami evacuation maps based on the 1946 event. “What hit Japan was a thousand-year event … and this scenario [in the eastern Aleutians] is a thousand year event.”


The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing more than 62,000 members in 144 countries. Join our conversation on FacebookTwitter, YouTube, and other social media channels.

Editor’s Note: An earlier version of this release included an incorrect spelling of Gerard Fryer’s first name. It has been corrected. 

Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Kate Wheeling at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.


“Paleotsunami evidence on Kaua‘i and numerical modeling of a great Aleutian tsunami”

Rhett Butler: Hawai’i Institute of Geophysics and Planetology, University of Hawai’i at Manoa, Honolulu, Hawaii, USA;

David Burney: National Tropical Botanical Garden, Kalaheo, Hawaii, USA;

David Walsh: Pacific Tsunami Warning Center, Honolulu, Hawaii, USA

Contact information for the authors:
Rhett Butler: +1 (808) 956-8760;

David Burney:

David Walsh:

AGU Contact:

Kate Wheeling
+1 (202) 777-7516

Kate Wheeling | American Geophysical Union

Further reports about: American Geophysical Union Honolulu Tsunamis Warning deposits earthquake evacuation

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>