Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian Underground Could Contain Clues to Life's Origins

22.01.2013
Minerals found in the subsurface of Mars, a zone of more than three miles below ground, make for the strongest evidence yet that the red planet may have supported life, according to research “Groundwater activity on Mars and implications for a deep biosphere,” published in Nature Geoscience on January 20, 2013.

Up to half of all life on Earth consists of simple microorganisms hidden in rocks beneath the surface and for some time, scientists have suggested that the same may be true for Mars. Now this theory has been supported by new research, which suggests that the ingredients for life have been present in the Martian subsurface for much of the planet’s history.

When meteorites strike the surface of Mars, they act like natural probes, bringing up rocks from far beneath the surface. Recent research has shown that many of the rocks brought up from the Martian subsurface contain clays and minerals whose chemical make-up has been altered by water, an essential element to support life. Some deep craters on Mars also acted as basins where groundwater likely emerged to produce lakes.

McLaughlin Crater, described in this study, is one such basin that contains clay and carbonate minerals formed in an ancient lake on Mars. The fluids that formed these minerals could carry clues to as to whether the subsurface contained life.

“We don’t know how life on Earth formed but it is conceivable that it originated underground, protected from harsh surface conditions that existed on early Earth. Due to plate tectonics, however, the early geological record of Earth is poorly preserved so we may never know what processes led to life’s origin and early evolution,” said Dr Joseph Michalski, lead author and planetary geologist at the Natural History Museum in London. “Exploring these rocks on Mars, where the ancient geologic record is better preserved than on Earth, would be like finding a stack of pages that have been ripped out of Earth’s geological history book. Whether the Martian geologic record contains life or not, analysis of these types of rocks would certainly teach us a tremendous amount about early chemical processes in the solar system.”

Co-author Deanne Rogers, Assistant Professor in the Department of Geosciences at Stony Brook University used data from the Thermal Emission Spectrometer aboard NASA’s Mars Global Surveyor and the Thermal Emission Imaging System aboard the Mars Odyssey orbiter to detect and identify minerals that proved to be consistent with a sustained aqueous environment on the floor of the McLaughlin Crater.

“Our understanding of Mars is changing very rapidly with all of the new mission data,” said Professor Rogers. “There have been several recent observations and models that have pointed to the possibility of a vast store of groundwater in the Martian past, and perhaps present. So you might expect that deep basins such as McLaughlin, which intersect the upwelling groundwater table, would contain evidence of this water. And this study found that evidence.”

Current exploration of Mars focuses on investigating surface processes because sedimentary rocks are most likely to provide the best chance evidence for habitability. Evidence suggests, however, that the Martian surface environment has been quite inhospitable to life for billions of years. In future missions, scientists could choose to target rocks related to the surface or subsurface, or perhaps do both by targeting areas where sedimentary rocks formed from subsurface fluids.

Michalski concludes: ‘In this paper, we present a strong case for exploring the subsurface, as well as the surface. But I don’t personally think we should try to drill into the subsurface to look for ancient life. Instead, we can study rocks that are naturally brought to the surface by meteor impact and search in deep basins where fluids have come to the surface.’

Co-author Professor John Parnell, geochemist at the University of Aberdeen, commented, “This research has demonstrated how studies of Earth and Mars depend on each other. It is what we have observed of microbes living below the continents and oceans of Earth. They allow us to speculate on habitats for past life on Mars, which in turn show us how life on the early Earth could have survived. We know from Earth's history that planets face traumatic conditions such as meteorite bombardment and ice ages, when the survival of life may depend on being well below ground. So it makes sense to search for evidence of life from that subsurface environment, in the geological records of both Earth and Mars. But it's one thing to do that on Earth – we need to be clever in finding a way to do it on Mars.”

Additional co-authors of the study include: Javier Caudros, Researcher, Clay Mineralogy, Earth Sciences Department, Natural History Museum, London; Paul B. Niles, Planetary Scientist, NASA Johnson Space Center; and Shawn P. Wright, Postdoctoral Fellow in Geology, Auburn University.

Deanne Rogers | Newswise
Further information:
http://www.stonybrook.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>