Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Martian Underground Could Contain Clues to Life's Origins

Minerals found in the subsurface of Mars, a zone of more than three miles below ground, make for the strongest evidence yet that the red planet may have supported life, according to research “Groundwater activity on Mars and implications for a deep biosphere,” published in Nature Geoscience on January 20, 2013.

Up to half of all life on Earth consists of simple microorganisms hidden in rocks beneath the surface and for some time, scientists have suggested that the same may be true for Mars. Now this theory has been supported by new research, which suggests that the ingredients for life have been present in the Martian subsurface for much of the planet’s history.

When meteorites strike the surface of Mars, they act like natural probes, bringing up rocks from far beneath the surface. Recent research has shown that many of the rocks brought up from the Martian subsurface contain clays and minerals whose chemical make-up has been altered by water, an essential element to support life. Some deep craters on Mars also acted as basins where groundwater likely emerged to produce lakes.

McLaughlin Crater, described in this study, is one such basin that contains clay and carbonate minerals formed in an ancient lake on Mars. The fluids that formed these minerals could carry clues to as to whether the subsurface contained life.

“We don’t know how life on Earth formed but it is conceivable that it originated underground, protected from harsh surface conditions that existed on early Earth. Due to plate tectonics, however, the early geological record of Earth is poorly preserved so we may never know what processes led to life’s origin and early evolution,” said Dr Joseph Michalski, lead author and planetary geologist at the Natural History Museum in London. “Exploring these rocks on Mars, where the ancient geologic record is better preserved than on Earth, would be like finding a stack of pages that have been ripped out of Earth’s geological history book. Whether the Martian geologic record contains life or not, analysis of these types of rocks would certainly teach us a tremendous amount about early chemical processes in the solar system.”

Co-author Deanne Rogers, Assistant Professor in the Department of Geosciences at Stony Brook University used data from the Thermal Emission Spectrometer aboard NASA’s Mars Global Surveyor and the Thermal Emission Imaging System aboard the Mars Odyssey orbiter to detect and identify minerals that proved to be consistent with a sustained aqueous environment on the floor of the McLaughlin Crater.

“Our understanding of Mars is changing very rapidly with all of the new mission data,” said Professor Rogers. “There have been several recent observations and models that have pointed to the possibility of a vast store of groundwater in the Martian past, and perhaps present. So you might expect that deep basins such as McLaughlin, which intersect the upwelling groundwater table, would contain evidence of this water. And this study found that evidence.”

Current exploration of Mars focuses on investigating surface processes because sedimentary rocks are most likely to provide the best chance evidence for habitability. Evidence suggests, however, that the Martian surface environment has been quite inhospitable to life for billions of years. In future missions, scientists could choose to target rocks related to the surface or subsurface, or perhaps do both by targeting areas where sedimentary rocks formed from subsurface fluids.

Michalski concludes: ‘In this paper, we present a strong case for exploring the subsurface, as well as the surface. But I don’t personally think we should try to drill into the subsurface to look for ancient life. Instead, we can study rocks that are naturally brought to the surface by meteor impact and search in deep basins where fluids have come to the surface.’

Co-author Professor John Parnell, geochemist at the University of Aberdeen, commented, “This research has demonstrated how studies of Earth and Mars depend on each other. It is what we have observed of microbes living below the continents and oceans of Earth. They allow us to speculate on habitats for past life on Mars, which in turn show us how life on the early Earth could have survived. We know from Earth's history that planets face traumatic conditions such as meteorite bombardment and ice ages, when the survival of life may depend on being well below ground. So it makes sense to search for evidence of life from that subsurface environment, in the geological records of both Earth and Mars. But it's one thing to do that on Earth – we need to be clever in finding a way to do it on Mars.”

Additional co-authors of the study include: Javier Caudros, Researcher, Clay Mineralogy, Earth Sciences Department, Natural History Museum, London; Paul B. Niles, Planetary Scientist, NASA Johnson Space Center; and Shawn P. Wright, Postdoctoral Fellow in Geology, Auburn University.

Deanne Rogers | Newswise
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>