Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?

30.07.2012
The August 2012 GSA Today science article is now online

Debate over the origin of large-scale polygons (hundreds of meters to kilometers in diameter) on Mars remains active even after several decades of detailed observations. Similarity in geometric patterns on Mars and Earth has long captured the imagination.

In this new article from GSA Today, geologists at The University of Texas at Austin examine these large-scale polygons and compare them to similar features on Earth's seafloor, which they believe may have formed via similar processes.

Understanding these processes may in turn fuel support for the idea of ancient oceans on Mars.

Through examination of THEMIS, MOLA, Viking, and Mariner data and images, planetary scientists have found that areas on the northern plains of Mars are divided into large polygon-shaped portions and that sets of these polygons span extensive areas of the Martian surface. Smaller polygon-shaped bodies are found elsewhere on Mars, but these are best explained by thermal contraction processes similar to those in terrestrial permafrost environments and not likely to form larger polygons.

In the August 2012 issue of GSA Today, Lorena Moscardelli and her colleagues from The University of Texas at Austin present a detailed comparison of the geometric features of these large Martian polygons and similar features found in deep-sea sediments here on Earth. Moscardelli and colleagues note striking similarities.

On Earth, polygon-shaped areas, with the edges formed by faults, are common in fine-grained deep-sea sediments. Some of the best examples of these polygon-fault areas are found in the North Sea and the Norwegian Sea. These are imaged using detailed, 3-D seismic surveys conducted to search for offshore oil and gas deposits. Images reproduced in this paper show that these deep-water polygons are also 1,000 meters or greater in diameter.

While the details of deep-sea polygon formation on Earth are complex, Moscardelli and her colleagues conclude that the majority of these polygons form in a common environment: sediments made up of fine-grained clays in ocean basins that are deeper than 500 meters, and when these sediments are only shallowly buried by younger sediments. A key observation -- also made recently by Michelle Cooke at the University of Massachusetts -- is that the physical mechanism of polygon formation requires a thick, wet, and mechanically weak layer of sediment.

Moscardelli and colleagues also conclude that the slope angle of the sea floor plays an important role in both the formation and preservation of these polygons. Where the seafloor slope is very gentle (slopes less than half a degree), the polygons have very regular shapes and sizes. In many locations where polygons have formed on top of buried topographic features on the seafloor, the shapes of the polygons were altered, and in some cases were broken up and disrupted where the slopes were steepest. Both observations are consistent with deformation of the soft marine sediments as they creep or flow downslope in these areas.

In the northern plains of Mars, where the surface is basically flat, the polygons have very regular shapes and sizes -- remarkably similar to the deep-sea polygons found on Earth. In places where the topography on Mars is more varied, and where there may be evidence for other sediment-transport features on the surface, areas of deformed and disrupted polygons can be found -- again similar to the disrupted polygons here on Earth.

On the basis of these striking similarities, the University of Texas at Austin team concludes that these features most likely share a common origin and were formed by similar mechanisms in a similar environment. The team argues that the Martian polygons were formed within a thick, wet, and weak layer of fine-grained sediments that were deposited in a deep-water setting, similar to the Earth polygons. Thus, these interesting geometric features may provide additional evidence for the existence of an ocean in the northern portion of Mars approximately three billion years ago.

GSA Today articles are open access online; for a print copy, please contact Kea Giles at the e-mail address. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GSA Today in articles published.

Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains Lorena Moscardelli, Tim Dooley, Dallas Dunlap, Martin Jackson, and Lesli Wood, Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78713-8924, USA. Pages 1-9; doi: 10.1130/GSATG147A.1, www.geosociety.org/gsatoday/archive/22/8/.

GSA Today is The Geological Society of America's science and news magazine for members and other earth scientists. Refereed lead science articles present exciting new research or synthesize important issues in a format understandable to all in the earth science community. GSA Today often features a refereed "Groundwork" articles -- tightly focused papers on issues of import to earth science policy, planning, funding, or education. All GSA Today articles are open access at www.geosociety.org/pubs/

Kea Giles | EurekAlert!
Further information:
http://www.geosociety.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>