Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Martian chemical complicates hunt for life’s clues

27.09.2013
The quest for evidence of life on Mars could be more difficult than scientists previously thought.

A scientific paper published today details the investigation of a chemical in the Martian soil that interferes with the techniques used by the Curiosity rover to test for traces of life. The chemical causes the evidence to burn away during the tests.


The Curiosity Rover took this composite self-portrait in the Rocknest sand patch on Mars. Tests of soil at the site suggest that troublesome chemicals called perchlorates are common on the Red Planet. Credit: NASA

AGU Contact:
Thomas Sumner
+1 (202) 777-7516
tsumner@agu.org

In search of clues to life’s presence on Mars – now or in the past – Curiosity checks Martian soil and rocks for molecules known as organic carbon compounds that are the hallmark of living organisms on Earth.

While trekking around the Rocknest sand dune in November 2012, the rover found evidence of perchlorate—a salt comprised of chlorine and oxygen. When Curiosity heats a scoop of Martian soil to test it for organic carbon, perchlorates can cause a chemical reaction that destroys organic carbon. Daniel Glavin, an astrobiologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and first author on the new paper, said he now believes the troublesome perchlorates are likely prevalent throughout the Martian surface.

“The presence of perchlorates isn’t good news for some of the techniques we’re currently using with Curiosity,” said Glavin. “This may change the way we search for organics in the future on Mars.”

Curiosity mission scientists previously announced finding perchlorates last December at the 2012 Fall Meeting of the American Geophysical Union (AGU) in San Francisco. Now, in the Journal of Geophysical Research: Planets, an AGU publication, they provide much more detail about the evidence and examine its potential impact on Mars exploration. Five other papers with other findings from the Curiosity mission are publishing today in the journal Science.

Accounting for perchlorate

The Curiosity rover’s Sample Analysis on Mars (SAM) system tests soil samples by heating them in an instrument, called a pyrolysis gas chromatograph mass spectrometer, which breaks the samples down into their chemical components and determines precisely how much of each of those components is present in the sample. Any perchlorate salts in the heated sample decompose as the temperature goes above 200 degrees Celsius (392 degrees Fahrenheit) and release pure oxygen. Organic molecules in the sample exposed to this oxygen will then combust into carbon dioxide, destroying the molecular evidence of their presence. Luckily, Glavin said, some organic carbon would likely survive, either incased in more heat-resistant materials or detected before the breakdown of perchlorates.

Glavin noted that scientists can account for the destroyed organic carbon by assuming a certain baseline of perchlorate in the Martian soil. In future tests, scientists can calculate how much organic carbon burnt away with the decomposing perchlorates in order to estimate the original amount of organic material in the soil. The findings at Rocknest serve particularly well for this purpose because the site was originally chosen because it was unlikely to have any organic material.

“It will be absolutely critical as we move on to other samples to compare them to the Rocknest dune to infer the presence or absence of Martian organic material,” said Glavin.

While Curiosity findings published today in Science do not use Rocknest as a perchlorate baseline, Glavin said the next batch of papers from the Sheepbed mudstone will use them for calibration.

Glavin added that Curiosity has the potential to avoid the perchlorate problem in the future by using techniques that do not involve heating the soil to the point where perchlorates break down. The rover already carries an apparatus capable of that, which it hasn’t yet used. The system, which employs liquids in its chemical assays, is more complicated than those currently in operation, Glavin said. And, it requires additional testing before it can be used, which he expects could happen in the near future.

Notes for Journalists

From now through 30 September, a PDF copy of this published article is available for download at this link. Starting 1 October, the article -- in PDF and HTML versions – will become available instead at the JGR:Planets website. Only journalists and public information officers of educational and scientific institutions who have registered with AGU can download the paper from the JGR:Planets location.

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at tsumner@agu.org. Please provide your name, the name of your publication, and your phone number.

Title:

Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

Authors:
Daniel Glavin, Caroline Freissinet, Jennifer Eigenbrode, Anna Brunner, William Brinckerhoff, Pamela Conrad, Jason Dworkin, Heather Franz, Mildred Martin, Alexander Pavlov and Paul Mahaffy

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA;

Kristen Miller and Roger Summons
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
Arnaud Buch
Laboratoire Génie des Procédés et Matériaux (LGPM), Ecole Centrale Paris, Chatenay-Malabry, France;
Brad Sutter
Jacobs Technology-ESCG, Houston, Texas, USA;
P. Douglas Archer, Jr., and Douglas Ming
Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, Houston, Texas, USA;
Sushil Atreya
Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan, USA;
Michel Cabane, David Coscia, Cyril Szopa and Samuel Teinturier
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Univ. Pierre et Marie Curie, Univ. Versailles Saint-Quentin & Centre National de la Recherche Scientifique (CNRS), Paris, France;
Patrice Coll
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Univ. Paris-Est Créteil, Univ. Denis Diderot & CNRS, Créteil, France;
John Grotzinger
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA;
Laurie Leshin
Department of Earth & Environmental Science and School of Science, Rensselaer Polytechnic Institute, Troy, New York, USA;
Christopher McKay
Space Science Division, NASA Ames Research Center, Moffett Field, California, USA;
Rafael Navarro-González
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, México D.F., Mexico;
Andrew Steele
Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA.
Contact information for the authors:
Daniel Glavin, Email: daniel.p.glavin@nasa.gov, Phone: (301) 614-6361

Thomas Sumner | American Geophysical Union
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>