Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars rocks indicate relatively recent quakes, volcanism, on Red Planet

20.02.2012
Images of a martian landscape offer evidence that the Red Planet's surface not only can shake like the surface of Earth, but has done so relatively recently.

If marsquakes do indeed take place, said the scientists who analyzed the high-resolution images, our nearest planetary neighbor may still have active volcanism, which could help create conditions for liquid water.

With High Resolution Imaging Science Experiment (HiRISE) imagery, the research team examined boulders along a fault system known as Cerberus Fossae, which cuts across a very young (few million years old) lava surface on Mars. By analyzing boulders that toppled from a martian cliff, some of which left trails in the coarse-grained soils, and comparing the patterns of dislodged rocks to such patterns caused by quakes on Earth, the scientists determined the rocks fell because of seismic activity. The martian patterns were not consistent with how boulders would scatter if they were deposited as ice melted, another means by which rocks are dispersed on Mars.

Gerald Roberts, an earthquake geologist with Birkbeck, an institution of the University of London, who led the study, said that the images of Mars included boulders that ranged from two to 20 meters (6.5 to 65 feet) in diameter, which had fallen in avalanches from cliffs. The size and number of boulders decreased over a radius of 100 kilometers (62 miles) centered at a point along the Cerberus Fossae faults.

"This is consistent with the hypothesis that boulders had been mobilized by ground-shaking, and that the severity of the ground-shaking decreased away from the epicenters of marsquakes," Roberts said.

The study, by Roberts and his colleagues, will be published Thursday in the Journal of Geophysical Research-Planets, a publication of the American Geophysical Union (AGU).

The team compared the pattern of boulder falls, and faulting of the martian surface, with those seen after a 2009 earthquake near L'Aquila, in central Italy. In that event, boulder falls occurred up to approximately 50 km (31 miles) from the epicenter. Because the area of displaced boulders in the marsscape stretched across an area approximately 200 km (124-

miles) long, the quakes were likely to have had a magnitude greater than 7, the researchers estimated.

By looking at the tracks that the falling boulders had left on the dust-covered martian surface, the team determined that the marsquakes were relatively recent - and certainly within the last few percent of the planet's history - because martian winds had not yet erased the boulder tracks. Trails on Mars can quickly disappear - for instance, tracks left by NASA robotic rovers are erased within a few years by martian winds, whereas other, sheltered tracks stick around longer. It is possible, the scientists concluded, that large-magnitude quake activity is still occurring on Mars.

The existence of marsquakes could be significant in the ongoing search for life on Mars, the researchers stated. If the faults along the Cerberus Fossae region are active, and the quakes are driven by movements of magma related to the nearby volcano, Elysium Mons, the energy provided in the form of heat from the volcanic activity under the surface of Mars could be able to melt ice. The resulting liquid water, they noted, could provide habitats friendly to life.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://dx.doi.org/10.1029/2011JE003816

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Possible evidence of palaeomarsquakes from fallen boulder populations, Cerberus Fossae, Mars"
Authors:
Gerald P. Roberts: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom;

Brian Matthews: Department of Physics and Astronomy, The Open University, Milton Keynes, United Kingdom;

Chris Bristow: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom and Hyder Consulting, London, United Kingdom;

Luca Guerrieri: Geological Survey of Italy, ISPRA - High Institute for the Environmental Protection and Research, Rome, Italy;

Joyce Vetterlein: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom.

Contact information for the authors:
Gerald Roberts, Phone: +44 (0)20 3073 8033, Email: gerald.roberts@ucl.ac.uk
AGU Contact:
Kate Ramsayer
+1 (202) 777-7524
kramsayer@agu.org
Birkbeck, University of London Contact:
Bryony Merritt
+44 (0)20 7380 3133
b.merritt@bbk.ac.uk

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>