Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars rocks indicate relatively recent quakes, volcanism, on Red Planet

20.02.2012
Images of a martian landscape offer evidence that the Red Planet's surface not only can shake like the surface of Earth, but has done so relatively recently.

If marsquakes do indeed take place, said the scientists who analyzed the high-resolution images, our nearest planetary neighbor may still have active volcanism, which could help create conditions for liquid water.

With High Resolution Imaging Science Experiment (HiRISE) imagery, the research team examined boulders along a fault system known as Cerberus Fossae, which cuts across a very young (few million years old) lava surface on Mars. By analyzing boulders that toppled from a martian cliff, some of which left trails in the coarse-grained soils, and comparing the patterns of dislodged rocks to such patterns caused by quakes on Earth, the scientists determined the rocks fell because of seismic activity. The martian patterns were not consistent with how boulders would scatter if they were deposited as ice melted, another means by which rocks are dispersed on Mars.

Gerald Roberts, an earthquake geologist with Birkbeck, an institution of the University of London, who led the study, said that the images of Mars included boulders that ranged from two to 20 meters (6.5 to 65 feet) in diameter, which had fallen in avalanches from cliffs. The size and number of boulders decreased over a radius of 100 kilometers (62 miles) centered at a point along the Cerberus Fossae faults.

"This is consistent with the hypothesis that boulders had been mobilized by ground-shaking, and that the severity of the ground-shaking decreased away from the epicenters of marsquakes," Roberts said.

The study, by Roberts and his colleagues, will be published Thursday in the Journal of Geophysical Research-Planets, a publication of the American Geophysical Union (AGU).

The team compared the pattern of boulder falls, and faulting of the martian surface, with those seen after a 2009 earthquake near L'Aquila, in central Italy. In that event, boulder falls occurred up to approximately 50 km (31 miles) from the epicenter. Because the area of displaced boulders in the marsscape stretched across an area approximately 200 km (124-

miles) long, the quakes were likely to have had a magnitude greater than 7, the researchers estimated.

By looking at the tracks that the falling boulders had left on the dust-covered martian surface, the team determined that the marsquakes were relatively recent - and certainly within the last few percent of the planet's history - because martian winds had not yet erased the boulder tracks. Trails on Mars can quickly disappear - for instance, tracks left by NASA robotic rovers are erased within a few years by martian winds, whereas other, sheltered tracks stick around longer. It is possible, the scientists concluded, that large-magnitude quake activity is still occurring on Mars.

The existence of marsquakes could be significant in the ongoing search for life on Mars, the researchers stated. If the faults along the Cerberus Fossae region are active, and the quakes are driven by movements of magma related to the nearby volcano, Elysium Mons, the energy provided in the form of heat from the volcanic activity under the surface of Mars could be able to melt ice. The resulting liquid water, they noted, could provide habitats friendly to life.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link:

http://dx.doi.org/10.1029/2011JE003816

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Possible evidence of palaeomarsquakes from fallen boulder populations, Cerberus Fossae, Mars"
Authors:
Gerald P. Roberts: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom;

Brian Matthews: Department of Physics and Astronomy, The Open University, Milton Keynes, United Kingdom;

Chris Bristow: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom and Hyder Consulting, London, United Kingdom;

Luca Guerrieri: Geological Survey of Italy, ISPRA - High Institute for the Environmental Protection and Research, Rome, Italy;

Joyce Vetterlein: Department of Earth and Planetary Sciences, Birkbeck, University of London, United Kingdom.

Contact information for the authors:
Gerald Roberts, Phone: +44 (0)20 3073 8033, Email: gerald.roberts@ucl.ac.uk
AGU Contact:
Kate Ramsayer
+1 (202) 777-7524
kramsayer@agu.org
Birkbeck, University of London Contact:
Bryony Merritt
+44 (0)20 7380 3133
b.merritt@bbk.ac.uk

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>