Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars curiosity rover provides strong evidence for flowing water

31.05.2013
Rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams

Despite satellite images that show vast networks of channels, past Mars rover missions have shown limited evidence for flowing water on Mars.


Multiple outcroppings of rocks like this one (termed a pebble conglomerate) were observed along the first 275 meters traversed by the rover with the high-resolution Mastcam.

Credit: NASA

Now, rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams. This suggests that the environment was drastically different than today's cold and dry conditions, with the potential to support life.

A paper on the team's findings is published in this week's edition of Science.

Since its landing last August, the Curiosity Rover has been looking for clues to whether the Martian surface has ever had environments capable of sustaining, or potentially evolving, life. Critical evidence may include hydrated minerals or water-bearing minerals, organic compounds or other chemical ingredients related to life.

Scientists of the Mars Science Laboratory mission used images collected from the rover's MastCam, which includes two high-resolution cameras mounted onto its mast. The cameras take full-color images and have filters that can isolate wavelengths of light that provide information about minerals present on the planet's surface.

As the rover moved from its landing site to its current location in "Yellowknife Bay," the cameras captured images of large rock formations composed of many rounded pebbles cemented into beds several centimeters thick. While such deposits are very common on Earth, the presence of these types of rocks on Mars has great significance for the Red Planet.

"These (rock formations) point to a past on Mars that was warmer, and wet enough to allow water to flow for many kilometers across the surface of Mars," said Kah, who helped work the cameras.

The clasts, or pebbles within the rock formation, appear to have been rounded by erosion while carried through water, such as in a stream or river. The size and orientation of the pebbles suggest they may have been carried by one or more shallow, fast-moving streams.

Using published abrasion rates and taking into consideration reduced gravity, the scientists estimate the pebbles were moved at least a few kilometers. Analyzing the grain size distribution and similar rock formations, the scientists believe the river was less than a meter deep and the water's average velocity was 0.2 to 0.75 meters per second.

"These rocks provide a record of past conditions at the site that contrasts with the modern Martian environment, whose atmospheric conditions make liquid water unstable," said Kah. "Finding ancient river deposits indicates sustained liquid water flows across the landscape, and raises prospects of once habitable conditions."

The mission will not conclude until at least 2014. For more information, visit http://www.nasa.gov/mission_pages/msl.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu
http://www.nasa.gov/mission_pages/msl

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>