Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars curiosity rover provides strong evidence for flowing water

31.05.2013
Rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams

Despite satellite images that show vast networks of channels, past Mars rover missions have shown limited evidence for flowing water on Mars.


Multiple outcroppings of rocks like this one (termed a pebble conglomerate) were observed along the first 275 meters traversed by the rover with the high-resolution Mastcam.

Credit: NASA

Now, rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams. This suggests that the environment was drastically different than today's cold and dry conditions, with the potential to support life.

A paper on the team's findings is published in this week's edition of Science.

Since its landing last August, the Curiosity Rover has been looking for clues to whether the Martian surface has ever had environments capable of sustaining, or potentially evolving, life. Critical evidence may include hydrated minerals or water-bearing minerals, organic compounds or other chemical ingredients related to life.

Scientists of the Mars Science Laboratory mission used images collected from the rover's MastCam, which includes two high-resolution cameras mounted onto its mast. The cameras take full-color images and have filters that can isolate wavelengths of light that provide information about minerals present on the planet's surface.

As the rover moved from its landing site to its current location in "Yellowknife Bay," the cameras captured images of large rock formations composed of many rounded pebbles cemented into beds several centimeters thick. While such deposits are very common on Earth, the presence of these types of rocks on Mars has great significance for the Red Planet.

"These (rock formations) point to a past on Mars that was warmer, and wet enough to allow water to flow for many kilometers across the surface of Mars," said Kah, who helped work the cameras.

The clasts, or pebbles within the rock formation, appear to have been rounded by erosion while carried through water, such as in a stream or river. The size and orientation of the pebbles suggest they may have been carried by one or more shallow, fast-moving streams.

Using published abrasion rates and taking into consideration reduced gravity, the scientists estimate the pebbles were moved at least a few kilometers. Analyzing the grain size distribution and similar rock formations, the scientists believe the river was less than a meter deep and the water's average velocity was 0.2 to 0.75 meters per second.

"These rocks provide a record of past conditions at the site that contrasts with the modern Martian environment, whose atmospheric conditions make liquid water unstable," said Kah. "Finding ancient river deposits indicates sustained liquid water flows across the landscape, and raises prospects of once habitable conditions."

The mission will not conclude until at least 2014. For more information, visit http://www.nasa.gov/mission_pages/msl.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu
http://www.nasa.gov/mission_pages/msl

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>