Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars curiosity rover provides strong evidence for flowing water

31.05.2013
Rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams

Despite satellite images that show vast networks of channels, past Mars rover missions have shown limited evidence for flowing water on Mars.


Multiple outcroppings of rocks like this one (termed a pebble conglomerate) were observed along the first 275 meters traversed by the rover with the high-resolution Mastcam.

Credit: NASA

Now, rocks analyzed by NASA's Mars Curiosity Rover team, including Linda Kah, associate professor of earth and planetary sciences at the University of Tennessee, Knoxville, provide solid evidence that Mars had rivers or streams. This suggests that the environment was drastically different than today's cold and dry conditions, with the potential to support life.

A paper on the team's findings is published in this week's edition of Science.

Since its landing last August, the Curiosity Rover has been looking for clues to whether the Martian surface has ever had environments capable of sustaining, or potentially evolving, life. Critical evidence may include hydrated minerals or water-bearing minerals, organic compounds or other chemical ingredients related to life.

Scientists of the Mars Science Laboratory mission used images collected from the rover's MastCam, which includes two high-resolution cameras mounted onto its mast. The cameras take full-color images and have filters that can isolate wavelengths of light that provide information about minerals present on the planet's surface.

As the rover moved from its landing site to its current location in "Yellowknife Bay," the cameras captured images of large rock formations composed of many rounded pebbles cemented into beds several centimeters thick. While such deposits are very common on Earth, the presence of these types of rocks on Mars has great significance for the Red Planet.

"These (rock formations) point to a past on Mars that was warmer, and wet enough to allow water to flow for many kilometers across the surface of Mars," said Kah, who helped work the cameras.

The clasts, or pebbles within the rock formation, appear to have been rounded by erosion while carried through water, such as in a stream or river. The size and orientation of the pebbles suggest they may have been carried by one or more shallow, fast-moving streams.

Using published abrasion rates and taking into consideration reduced gravity, the scientists estimate the pebbles were moved at least a few kilometers. Analyzing the grain size distribution and similar rock formations, the scientists believe the river was less than a meter deep and the water's average velocity was 0.2 to 0.75 meters per second.

"These rocks provide a record of past conditions at the site that contrasts with the modern Martian environment, whose atmospheric conditions make liquid water unstable," said Kah. "Finding ancient river deposits indicates sustained liquid water flows across the landscape, and raises prospects of once habitable conditions."

The mission will not conclude until at least 2014. For more information, visit http://www.nasa.gov/mission_pages/msl.

Whitney Heins | EurekAlert!
Further information:
http://www.utk.edu
http://www.nasa.gov/mission_pages/msl

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>