Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New maps reveal locations of species at risk as climate changes

10.02.2014
An international team of scientists has produced global maps showing how fast and in which direction local climates have shifted.

In research published today in the journal Nature, CSIRO and an international team of scientists revealed global maps showing how fast and in which direction local climates are shifting. This new study points to a simpler way of looking at climatic changes and their likely effects on biodiversity.


Speed and direction of climate shifts over the past 50 years in Australia.

As climate change unfolds over the next century, plants and animals will need to adapt or shift locations to track their ideal climate.

“The maps show areas where plants and animals may struggle to find a new home in a changing climate and provide crucial information for targeting conservation efforts,” CSIRO's Dr Elvira Poloczanska said.

The study analysed 50 years of sea surface and land temperature data (1960-2009) and also investigated two future scenarios for marine environments (‘business as usual’ and a 1.75°C temperature increase).

The new maps show where new thermal environments are being generated and where existing environments may disappear.

“The maps show us how fast and in which direction temperatures are shifting, and where climate migrants following them may hit barriers such as coastlines. Our work shows that climate migration is far more complex than a simple shift towards the poles,” ecological geographer with the project Kristen Williams said.

“Across Australia, species are already experiencing warmer temperatures. In terrestrial habitats, species have started to seek relief by moving to higher elevations, or further south. However, some species of animals and plants cannot move large distances, and some not at all.”

Species migration can have important consequences for local biodiversity. For example, the dry, flat continental interior of Australia is a hot, arid region where species already exist close to the margin of their thermal tolerances.

Some species driven south from monsoonal northern Australia in the hope of cooler habitats may perish in that environment.

“In the oceans, warming waters and a strengthening of the East Australian Current have mobilised the Long-spined Sea Urchin (Centrostephanus rodgersii), previously only found as far south as southern NSW, to invade the eastern Tasmania coast. This has resulted in the decline of giant kelp forests with knock-on effects for commercially-fished rock lobsters,” Dr Poloczanska said.

CSIRO and University of Queensland’s Anthony Richardson said the study cannot be used as a sole guide as to what to do in the face of climate change.

“Biological factors such as a species’ capacity to adapt and disperse need to be taken into consideration,” Professor Richardson said.

“But in an unprecedented period of climate change, economic development and fast growing demand on an already pressured planet, we need to act fast to make sure as much of the world’s living resources survive that change.”

The study was undertaken by CSIRO's Dr Elvira Poloczanska and Associate Professor Anthony Richardson and Dr Kristen Williams with a team of 18 international researchers from Australia, Canada, Germany, Spain, UK and USA.

Chris Johnson | EurekAlert!
Further information:
http://www.csiro.au
http://www.csiro.au/Portals/Media/New-maps-reveal-locations-of-species-at-risk-as-climate-changes.aspx

Further reports about: Australia CSIRO climatic change marine environment warming waters

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>