Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the future: new pathways for greenhouse gas concentrations

26.09.2011
Behind grand projections of global warming’s impacts and recommendations for mitigation, there is huge not-so-glamourous research.

Four new benchmark scenarios for future climate change are being presented now, ranging from – for the first time – a low emission scenario assuming ambitious mitigation action, which would keep temperature rise below 2 degrees Celsius, to a very high scenario. These so-called Representative Concentration Pathways, also for the first time, have been extended to the year 2300. This is more than just an update of the previously used scenarios.

All this will be the basis for the next report of the U.N.’s Intergovernmental Panel on Climate Change (IPCC) in 2013/14, mapping the future so that the pathways are the common reference for the global scientific community. Scientists of the Potsdam Institute for Climate Impact Research (PIK) are at the heart of this process, which involves many international partners.

“Staying below the threshold of 2 degrees is still possible, but it is a close call,” says Malte Meinshausen of PIK. He is one of the authors of a special issue of the journal Climatic Change focusing on the scenario development that is to be published in November. The new low emission scenario is expected to shed light on ambitious mitigation options and unavoidable adaptation needs – “this is something that has been lacking before”. Such systematic research across the scientific community has so far only been done for no-climate-policy worlds. Limiting global warming to below 2 degrees Celsius above pre-industrial levels is considered to give a good chance to prevent dangerous climate change. However, humankind would have to let peak emissions “before 2020,” Meinshausen says.

“Changing your mind mid-course is hardly an option”

One result of this scenario work is that “changing your mind mid-course is hardly an option,” Meinshausen says. After first following a high scenario until one considers climate change impacts too high towards the end of the century, and then attempting to aim for a climate that would have resulted from a low mitigation scenario instead, “seems technologically challenging to the degree that it can be judged impossible”. Thus it is important of which trajectory decision-makers choose to embark on.

As such, scenarios help to explore the implications of climate policy or climate inaction by informing about different possible futures. They consist of large sets of data – ranging from land use patterns to gridded tropospheric ozone precursor emissions – and assumptions on the complex interplay of physical and chemical processes. PIK’s contribution in this collaborative exercise within the scientific community was to turn the underlying emission scenarios into the benchmark set of greenhouse gas concentrations from pre-industrial times to 2300. The latest knowledge on the Earth system’s response to anthropogenic emissions was synthesized in order to arrive at this best-estimate benchmark which is going to be used as the very basis for ongoing climate model intercomparisons.

Socio-economic scenarios are an important complement

Complementary to this are the socio-economic scenarios. "People and businesses obviously are drivers of climate change," says Elmar Kriegler of PIK. "At the same time, they are affected by the impacts of global warming." Both the magnitude of their contribution to greenhouse gas emissions from burning fossil energy and their ability to adapt to impacts, such as sea level rise, depend on factors like population growth and wealth. This is why another large international team of researchers, including Kriegler, is working on a new common framework for these socio-economic scenarios. It will be completed in November. In the end there will be a matrix combining different socio-economic scenarios with emission scenarios (the Representative Concentration Pathways).

"Together, they provide the basis not just for sound research on climate change,” says Kriegler. "The results thereof should enable an integrated assessment of climate mitigation, adaptation and residual impacts across a wide range of plausible futures.”

Article: Meinshausen, M., Smith, S. J., Calvin, K., Daniel, J. S., Kainuma, M. L. T., Lamarque, J.-F., Matsumoto, K., Montzka, S. A., Raper, S.C.B., Riahi, K., Thomson, A., Velders, G.J.M., van Vuuren, D.P.P. (2011): RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change [doi 10.1007/s10584-011-0156-z] (online first)

For further information please contact the PIK press office:

Phone: +49 331 288 25 07
E-mail: press@pik-potsdam.de

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht Arctic melt ponds form when meltwater clogs ice pores
24.01.2017 | University of Utah

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>