Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New map hints at Venus's wet, volcanic past

15.07.2009
Venus Express has charted the first map of Venus's southern hemisphere at infrared wavelengths. The new map hints that our neighbouring world may once have been more Earth-like, with both, a plate tectonics system and an ocean of water.

The map comprises over a thousand individual images, recorded between May 2006 and December 2007. Because Venus is covered in clouds, normal cameras cannot see the surface, but Venus Express used a particular infrared wavelength that can see through them.

Although radar systems have been used in the past to provide high-resolution maps of Venus's surface, Venus Express is the first orbiting spacecraft to produce a map that hints at the chemical composition of the rocks. The new data is consistent with suspicions that the highland plateaus of Venus are ancient continents, once surrounded by ocean and produced by past volcanic activity.

"This is not proof, but it is consistent. All we can really say at the moment is that the plateau rocks look different from elsewhere," says Nils Müller at the Joint Planetary Interior Physics Research Group of the University Münster and DLR Berlin, who headed the mapping efforts.

The rocks look different because of the amount of infrared light they radiate into space, similar to the way a brick wall heats up during the day and gives off its heat at night. Besides, different surfaces radiate different amounts of heat at infrared wavelengths due to a material characteristic known as emissivity, which varies in different materials. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument captured this infrared radiation during Venus's night-time orbits around the planet's southern hemisphere.

The eight Russian landers of the 1970s and 1980s touched down away from the highlands and found only basalt-like rock beneath their landing pads. The new map shows that the rocks on the Phoebe and Alpha Regio plateaus are lighter in colour and look old compared to the majority of the planet. On Earth, such light-coloured rocks are usually granite and form continents.

Granite is formed when ancient rocks, made of basalt, are driven down into the planet by shifting continents, a process known as plate tectonics. The water combines with the basalt to form granite and the mixture is reborn through volcanic eruptions.

"If there is granite on Venus, there must have been an ocean and plate tectonics in the past," says Müller.

Müller points out that the only way to know for sure whether the highland plateaus are continents is to send a lander there. Over time, Venus's water has been lost to space, but there might still be volcanic activity. The infrared observations are very sensitive to temperature. But in all images they saw only variations of between 3-20°C, instead of the kind of temperature difference they would expect from active lava flows.

Although Venus Express did not see any evidence of ongoing volcanic activity this time this time around, Müller does not rule it out. "Venus is a big planet, being heated by radioactive elements in its interior. It should have as much volcanic activity as Earth," he says. Indeed, some areas do appear to be composed of darker rock, which hints at relatively recent volcanic flows.

The new map gives astronomers another tool in their quest to understand why Venus is so similar in size to Earth and yet has evolved so differently.

Håkan Svedhem | EurekAlert!
Further information:
http://www.esa.int

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>