Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mainz scientists develop new soil moisture sensor

11.09.2015

Innovative measuring device enables the water content of biological soil crusts to be measured for the first time

Biological soil crusts comprising lichens, algae and mosses play an important role in the earth’s ecosystems. They fix carbon dioxide and nitrogen while giving off significant amounts of the greenhouse gas nitrous oxide. Information on soil moisture is of vital importance to investigate their fixation and release processes and to understand them in detail.


The newly developed soil moisture sensor being used in a lichen-dominated soilcrust in the Succulent Karoo, a semi-desert in South Africa.

Bettina Weber, MPI für Chemie


The site, where the soil moisture sensors are installed as a compound of climate stations, is protected from grazing animals by means of a fence.

Bettina Weber, MPI für Chemie

Previously, no sensor existed that could measure the water content in the top millimeters of the soil with sufficient accuracy. This gap has now been closed by a new development of Bettina Weber and her colleagues at the Max Planck Institute for Chemistry in Mainz, as can be read online in the ‘Early View’ section of the “Methods in Ecology and Evolution” Wiley Online Library. They have managed to construct an appropriate soil moisture sensor, which delivers reliable data, as well as being cost-effective and flexible to use.

Up to now, the available methods were only moderately suited to at least approximately determine the water content within the top soil level. “The only sensor that can be used in the uppermost layer merely measures whether the organisms are active, but not the water content. All other soil moisture sensors measure the water content in deeper layers, making them totally unsuited for applications in biological soil crusts,” Bettina Weber, group leader in the Multiphase Chemistry department, describes the problem.

Because the soil moisture in the top five millimeters is essential for the activity, productivity and surface transfer rate of periodically wet organisms, however, Bettina Weber tried to determine this unknown factor by means of an own new development.

Together with her research team, she found a method that enabled her to determine the soil moisture by means of its conductivity. The key component of the measuring device is thus a conductivity sensor.

The calibration of the sensors posed the biggest challenge: Because the conductivity of the soil is affected not only by its moisture, but also by factors such as its granularity and salt content, the sensors must always be calibrated within the substrate that is being measured. It was only after numerous attempts that the researchers were able to develop a reliable method that enabled them to assign the conductivity values to the corresponding water content values.

“As it is really time-consuming to create calibration curves in the laboratory after the field measurements, we have also developed a method for creating a calibration curve that is slightly less accurate but requires fewer field measurements,” states Thomas Berkemeier, doctoral student in the Multiphase Chemistry department, who developed the mathematical approach for calculating the calibration curves.

As a whole, the new development of the Mainz scientists convinces due to its numerous advantages: Firstly, thanks to its simple structure and robust construction, the sensor can be deployed universally in all kinds of soils around the world. Secondly, the low acquisition costs make it possible to install multiple sensors simultaneously, allowing small-scale patterns and dependencies to be registered in a statistically reliable manner, something that wasn’t possible previously.

With simple adjustments, the newly developed soil moisture sensors can be used for measurements over larger soil areas. This makes them potentially useful not only for research projects on biological soil crusts, but also for industrial applications, for instance in the processing of concrete.

The Max Planck scientists have obtained protection for their invention and have registered the moisture sensor as a utility patent. Currently, Bettina Weber is already working on a further development of the sensor, to make it ready for utilization in distributed sensor networks.

Original publication:
B. Weber, Th. Berkemeier, N. Ruckteschler, J. Caesar, H. Heintz, H. Ritter, H. Brass: “Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts”, Methods in Ecology and Evolution (2015), doi: 10.1111/2041-210X.12459

Contact:
PD Dr. Bettina Weber
Max-Planck-Institut für Chemie
Abteilung Multiphasenchemie
55128 Mainz, Germany
Email: b.weber@mpic.de

Additional information about biological soil crusts:
Biological soil crusts consist of a community of cyanobacteria, lichens, algae and bryophytes, together with fungi, bacteria, and archaea, which grow in the upper three to five millimeters of the soil, forming a hardened layer. They exist in dry regions throughout the world and occupy approximately 20 million square meters, which is almost as large as the surface of South America. All the organisms in biological soil crusts are poikilohydric, which means that they are only active when the soil is sufficiently moist, but survive in an inactive state under dry conditions.

Weitere Informationen:

http://www.mpic.de/en/news/press-information/news/mainz-scientists-develop-new-s...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>