Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Leaves Reveal Most Polluted Byways

19.10.2009
Tree leaves may be powerful tools for monitoring air quality and planning biking routes and walking paths, suggests a new study by scientists at Western Washington University in Bellingham, WA, USA. The research will be presented at this month's Annual Meeting of the Geological Society of America in Portland, Oregon.

Leaves along bus routes were up to 10 times more magnetic than leaves on quieter streets, the study found. That magnetism comes from tiny particles of pollution—such as iron oxides from diesel exhaust—that float through the air and either stick to leaves or grow right into them.

Geophysicist Bernie Housen and colleague Luigi Jovane collected several leaves from 15 trees in and around Bellingham. Five of the trees lay next to busy bus routes. Five sat on parallel but much quieter side streets. Five were in a rural area nearby.

Using two measurement techniques, Housen and Jovane found that leaves along bus routes were between two and 8 times more magnetic than leaves from nearby streets and between four and 10 times more magnetic than rural leaves.

Inhaling particulate matter has been linked to a number of negative health consequences, including breathing troubles and even heart problems. Tiny particles bypass the airways and get deep into the lung tissues.

The new study suggests that biking or walking along heavy bus routes might be as bad for your health as you might suspect when choking on exhaust fumes. That’s something cities might want to consider as they plan new routes for cyclists and pedestrians.

“I ride my bike to work every day,” Housen said. “I’ve always wondered what the effects of diesel exhaust are on my health.”

While many details remain to be worked out, the study also suggests that collecting tree leaves can be a simple and effective way to measure the load of particulate matter in the air. European researchers have been exploring the idea for a while, but this is one of the first studies to apply the technique in the United States.

“Using trees is a nice, low-tech way to do these studies and you don’t need to use fancy particle collectors,” Housen said. “If it works, you could easily collect a lot of data from a region. You could even have kids collect leaves. That makes it a powerful tool to see variation of particulate matter on a very detailed level.”

**WHEN & WHERE**

Monitoring impacts of mass-transit vehicles on particulate matter concentrations in urban environments using magnetic properties of tree leaves: Pilot study of bus and bike routes in Bellingham, WA
Sunday, 18 October 2009, 11:15-11:30 a.m.
Oregon Convention Center, Portland Ballrooms 251/258
View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_164610.htm.

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Bernie Housen
Western Washington University, Geology Dept.
360-650-6573 (office)
bernieh@wwu.edu
http://myweb.facstaff.wwu.edu/bernieh/
**IMAGES AVAILABLE**
Images available at www.geosociety.org/news/pr/09-53.htm
For more information on the 2009 Meeting, visit http://www.geosociety.org/meetings/2009/.

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>