Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Leaves Reveal Most Polluted Byways

19.10.2009
Tree leaves may be powerful tools for monitoring air quality and planning biking routes and walking paths, suggests a new study by scientists at Western Washington University in Bellingham, WA, USA. The research will be presented at this month's Annual Meeting of the Geological Society of America in Portland, Oregon.

Leaves along bus routes were up to 10 times more magnetic than leaves on quieter streets, the study found. That magnetism comes from tiny particles of pollution—such as iron oxides from diesel exhaust—that float through the air and either stick to leaves or grow right into them.

Geophysicist Bernie Housen and colleague Luigi Jovane collected several leaves from 15 trees in and around Bellingham. Five of the trees lay next to busy bus routes. Five sat on parallel but much quieter side streets. Five were in a rural area nearby.

Using two measurement techniques, Housen and Jovane found that leaves along bus routes were between two and 8 times more magnetic than leaves from nearby streets and between four and 10 times more magnetic than rural leaves.

Inhaling particulate matter has been linked to a number of negative health consequences, including breathing troubles and even heart problems. Tiny particles bypass the airways and get deep into the lung tissues.

The new study suggests that biking or walking along heavy bus routes might be as bad for your health as you might suspect when choking on exhaust fumes. That’s something cities might want to consider as they plan new routes for cyclists and pedestrians.

“I ride my bike to work every day,” Housen said. “I’ve always wondered what the effects of diesel exhaust are on my health.”

While many details remain to be worked out, the study also suggests that collecting tree leaves can be a simple and effective way to measure the load of particulate matter in the air. European researchers have been exploring the idea for a while, but this is one of the first studies to apply the technique in the United States.

“Using trees is a nice, low-tech way to do these studies and you don’t need to use fancy particle collectors,” Housen said. “If it works, you could easily collect a lot of data from a region. You could even have kids collect leaves. That makes it a powerful tool to see variation of particulate matter on a very detailed level.”

**WHEN & WHERE**

Monitoring impacts of mass-transit vehicles on particulate matter concentrations in urban environments using magnetic properties of tree leaves: Pilot study of bus and bike routes in Bellingham, WA
Sunday, 18 October 2009, 11:15-11:30 a.m.
Oregon Convention Center, Portland Ballrooms 251/258
View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_164610.htm.

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Bernie Housen
Western Washington University, Geology Dept.
360-650-6573 (office)
bernieh@wwu.edu
http://myweb.facstaff.wwu.edu/bernieh/
**IMAGES AVAILABLE**
Images available at www.geosociety.org/news/pr/09-53.htm
For more information on the 2009 Meeting, visit http://www.geosociety.org/meetings/2009/.

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>