Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Leaves Reveal Most Polluted Byways

19.10.2009
Tree leaves may be powerful tools for monitoring air quality and planning biking routes and walking paths, suggests a new study by scientists at Western Washington University in Bellingham, WA, USA. The research will be presented at this month's Annual Meeting of the Geological Society of America in Portland, Oregon.

Leaves along bus routes were up to 10 times more magnetic than leaves on quieter streets, the study found. That magnetism comes from tiny particles of pollution—such as iron oxides from diesel exhaust—that float through the air and either stick to leaves or grow right into them.

Geophysicist Bernie Housen and colleague Luigi Jovane collected several leaves from 15 trees in and around Bellingham. Five of the trees lay next to busy bus routes. Five sat on parallel but much quieter side streets. Five were in a rural area nearby.

Using two measurement techniques, Housen and Jovane found that leaves along bus routes were between two and 8 times more magnetic than leaves from nearby streets and between four and 10 times more magnetic than rural leaves.

Inhaling particulate matter has been linked to a number of negative health consequences, including breathing troubles and even heart problems. Tiny particles bypass the airways and get deep into the lung tissues.

The new study suggests that biking or walking along heavy bus routes might be as bad for your health as you might suspect when choking on exhaust fumes. That’s something cities might want to consider as they plan new routes for cyclists and pedestrians.

“I ride my bike to work every day,” Housen said. “I’ve always wondered what the effects of diesel exhaust are on my health.”

While many details remain to be worked out, the study also suggests that collecting tree leaves can be a simple and effective way to measure the load of particulate matter in the air. European researchers have been exploring the idea for a while, but this is one of the first studies to apply the technique in the United States.

“Using trees is a nice, low-tech way to do these studies and you don’t need to use fancy particle collectors,” Housen said. “If it works, you could easily collect a lot of data from a region. You could even have kids collect leaves. That makes it a powerful tool to see variation of particulate matter on a very detailed level.”

**WHEN & WHERE**

Monitoring impacts of mass-transit vehicles on particulate matter concentrations in urban environments using magnetic properties of tree leaves: Pilot study of bus and bike routes in Bellingham, WA
Sunday, 18 October 2009, 11:15-11:30 a.m.
Oregon Convention Center, Portland Ballrooms 251/258
View abstract at http://gsa.confex.com/gsa/2009AM/finalprogram/abstract_164610.htm.

**CONTACT INFORMATION**

For on-site assistance during the 2009 Annual Meeting, 18-21 October, contact Christa Stratton in the Newsroom (7:30 a.m.-6:00 p.m. PDT), Oregon Convention Center, Room D133, +1-503-963-5708.

After the meeting contact:
Bernie Housen
Western Washington University, Geology Dept.
360-650-6573 (office)
bernieh@wwu.edu
http://myweb.facstaff.wwu.edu/bernieh/
**IMAGES AVAILABLE**
Images available at www.geosociety.org/news/pr/09-53.htm
For more information on the 2009 Meeting, visit http://www.geosociety.org/meetings/2009/.

Christa Stratton | Newswise Science News
Further information:
http://www.geosociety.org

More articles from Earth Sciences:

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

nachricht Weather extremes: Humans likely influence giant airstreams
27.03.2017 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>