Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic field, mantle convection and tectonics

30.07.2012
On a time scale of tens to hundreds of millions of years, the geomagnetic field may be influenced by currents in the mantle. The frequent polarity reversals of Earth's magnetic field can also be connected with processes in the mantle.
These are the research results presented by a group of geoscientists in the new advance edition of "Nature Geoscience" on Sunday, July 29th. The results show how the rapid processes in the outer core, which flows at rates of up to about one millimeter per second, are coupled with the processes in the mantle, which occur more in the velocity range of centimeters per year.

The international group of scientists led by A. Biggin of the University of Liverpool included members of the GFZ German Research Centre for Geosciences, the IPGP Paris, the universities of Oslo and Utrecht, and other partners.

Berechnete gegenwärtige Wärmestromverteilung an der Kern-Mantel-Grenze


Einfluss von Subduktionsvorgängen auf die Verteilung des Wärmestroms

It is known that the Earth's magnetic field is produced by convection currents of an electrically conducting iron-nickel alloyin the liquid core, about 3,000 kilometers below the earth's surface. The geomagnetic field is highly variable, there are changes in Earth's magnetic field on a multitude of spatial and temporal scales. Above the liquid outer core is the mantle, the rock in which behaves plastically deformable due to the intense heat and high pressure.

At the boundary between Earth's core and mantle at 2900 km depth there is an intense heat exchange, which is on the one hand directed from the Earth's core into the mantle. On the other hand, processes within Earth's mantle in turn also affect the heat flow. The interesting question is how the much slower flow in the solid mantle influences the heat flow and its spatial distribution at the core-mantle boundary, and how this will affect the Earth's magnetic field which is produced due to the much faster currents in the Earth's core.

/Key variable heat transfer/

"The key variable is the heat flow. A cooler mantle accelerates the flow of heat from the hot core of the Earth, and in this way alters the also heat-driven convection in the Earth's core", said Bernhard Steinberger of the GFZ German Research Centre for Geosciences. "Ocean floor sinking into the mantle due to tectonic processes can lead to cooling in the mantle. They cause at these sites an increased heat flow into the cooler parts, namely until they have been heated to the ambient temperature." That might take several hundred million years, however.

Conversely, the hot core of the Earth leads to the ascent of heated rocks in form of large bubbles, so-called mantle plumes that separate from the core-mantle boundary and make their way up to the surface of the earth. This is how Hawaii came into existence. This increases the local heat flux out of the earth's core and in turn modifies the generator of the geomagnetic field.

/Reversals of the magnetic field/

In the Earth's history, polarity reversals of the geomagnetic field are nothing extraordinary. The most recent took place only 780 000 years ago, geologically speaking a very short period of time. The research team was able to determine that in the period of 200 to 80 million years before present, reversals initially happened more often, namely up to ten times in hundred million years. "Surprisingly, these reversals stopped about 120 million years ago and were absent for nearly 40 million years," explains GFZ scientist Sachs. Scientists presume that the reason for this is a concurrent reorientation of the whole mantle and crust with a shift in the geographic and magnetic poles of about 30°. Known as "true polar wander", thisprocess is caused by a change in density distribution in the mantle. If it increases the heat flux in equatorial regions, it would presumably lead to more frequent field reversals, if it decreases it, the field reversal might not occur.

/Looking to the future/

According to current knowledge, therefore, an influence of plate tectonics and mantle convection on the Earth's magnetic field seems quite possible. The article also shows, however, that further research is still needed for a better understanding of these relationships. In particular, more episodes of "true polar wander" should be derived from paleomagnetic data, and it should be determined whether these are usually associated with an altered behavior of the magnetic field (e.g. frequency of field reversal). Also, future models for the generation of the geomagnetic field should investigate the influence of the spatial and temporal variation of the heat flux at the core-mantle boundary in more detail.

J. Biggin et al., "Possible links between long-term geomagnetic variations and whole-mantle convection processes", Nature Geoscience, Vol. 5, August 2012, doi:10.1038/NGEO1521

Images in printable resolution and an animation can be found at: http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

contact : Dr. Bernhard Steinberger, +49-331-288 1881

F.Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>