Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic field, mantle convection and tectonics

30.07.2012
On a time scale of tens to hundreds of millions of years, the geomagnetic field may be influenced by currents in the mantle. The frequent polarity reversals of Earth's magnetic field can also be connected with processes in the mantle.
These are the research results presented by a group of geoscientists in the new advance edition of "Nature Geoscience" on Sunday, July 29th. The results show how the rapid processes in the outer core, which flows at rates of up to about one millimeter per second, are coupled with the processes in the mantle, which occur more in the velocity range of centimeters per year.

The international group of scientists led by A. Biggin of the University of Liverpool included members of the GFZ German Research Centre for Geosciences, the IPGP Paris, the universities of Oslo and Utrecht, and other partners.

Berechnete gegenwärtige Wärmestromverteilung an der Kern-Mantel-Grenze


Einfluss von Subduktionsvorgängen auf die Verteilung des Wärmestroms

It is known that the Earth's magnetic field is produced by convection currents of an electrically conducting iron-nickel alloyin the liquid core, about 3,000 kilometers below the earth's surface. The geomagnetic field is highly variable, there are changes in Earth's magnetic field on a multitude of spatial and temporal scales. Above the liquid outer core is the mantle, the rock in which behaves plastically deformable due to the intense heat and high pressure.

At the boundary between Earth's core and mantle at 2900 km depth there is an intense heat exchange, which is on the one hand directed from the Earth's core into the mantle. On the other hand, processes within Earth's mantle in turn also affect the heat flow. The interesting question is how the much slower flow in the solid mantle influences the heat flow and its spatial distribution at the core-mantle boundary, and how this will affect the Earth's magnetic field which is produced due to the much faster currents in the Earth's core.

/Key variable heat transfer/

"The key variable is the heat flow. A cooler mantle accelerates the flow of heat from the hot core of the Earth, and in this way alters the also heat-driven convection in the Earth's core", said Bernhard Steinberger of the GFZ German Research Centre for Geosciences. "Ocean floor sinking into the mantle due to tectonic processes can lead to cooling in the mantle. They cause at these sites an increased heat flow into the cooler parts, namely until they have been heated to the ambient temperature." That might take several hundred million years, however.

Conversely, the hot core of the Earth leads to the ascent of heated rocks in form of large bubbles, so-called mantle plumes that separate from the core-mantle boundary and make their way up to the surface of the earth. This is how Hawaii came into existence. This increases the local heat flux out of the earth's core and in turn modifies the generator of the geomagnetic field.

/Reversals of the magnetic field/

In the Earth's history, polarity reversals of the geomagnetic field are nothing extraordinary. The most recent took place only 780 000 years ago, geologically speaking a very short period of time. The research team was able to determine that in the period of 200 to 80 million years before present, reversals initially happened more often, namely up to ten times in hundred million years. "Surprisingly, these reversals stopped about 120 million years ago and were absent for nearly 40 million years," explains GFZ scientist Sachs. Scientists presume that the reason for this is a concurrent reorientation of the whole mantle and crust with a shift in the geographic and magnetic poles of about 30°. Known as "true polar wander", thisprocess is caused by a change in density distribution in the mantle. If it increases the heat flux in equatorial regions, it would presumably lead to more frequent field reversals, if it decreases it, the field reversal might not occur.

/Looking to the future/

According to current knowledge, therefore, an influence of plate tectonics and mantle convection on the Earth's magnetic field seems quite possible. The article also shows, however, that further research is still needed for a better understanding of these relationships. In particular, more episodes of "true polar wander" should be derived from paleomagnetic data, and it should be determined whether these are usually associated with an altered behavior of the magnetic field (e.g. frequency of field reversal). Also, future models for the generation of the geomagnetic field should investigate the influence of the spatial and temporal variation of the heat flux at the core-mantle boundary in more detail.

J. Biggin et al., "Possible links between long-term geomagnetic variations and whole-mantle convection processes", Nature Geoscience, Vol. 5, August 2012, doi:10.1038/NGEO1521

Images in printable resolution and an animation can be found at: http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

contact : Dr. Bernhard Steinberger, +49-331-288 1881

F.Ossing | EurekAlert!
Further information:
http://www.gfz-potsdam.de
http://www.gfz-potsdam.de/portal/gfz/Public+Relations/M40-Bildarchiv/Magnetfeld_Waermefluss

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>