Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnesium oxide: From Earth to super-Earth

The mantles of Earth and other rocky planets are rich in magnesium and oxygen.

Due to its simplicity, the mineral magnesium oxide is a good model for studying the nature of planetary interiors. New work from a team led by Carnegie's Stewart McWilliams studied how magnesium oxide behaves under the extreme conditions deep within planets and found evidence that alters our understanding of planetary evolution. It is published November 22 by Science Express.

Magnesium oxide is particularly resistant to changes when under intense pressures and temperatures. Theoretical predictions claim that it has just three unique states with different structures and properties present under planetary conditions: solid under ambient conditions (such as on the Earth's surface), liquid at high temperatures, and another structure of the solid at high pressure. The latter structure has never been observed in nature or in experiments.

McWilliams and his team observed magnesium oxide between pressures of about 3 million times normal atmospheric pressure (0.3 terapascals) to 14 million times atmospheric pressure (1.4 terapascals) and at temperatures reaching as high as 90,000 degrees Fahrenheit (50,000 Kelvin), conditions that range from those at the center of our Earth to those of large exo-planet super-Earths. Their observations indicate substantial changes in molecular bonding as the magnesium oxide responds to these various conditions, including a transformation to a new high-pressure solid phase.

In fact, when melting, there are signs that magnesium oxide changes from an electrically insulating material like quartz (meaning that electrons do not flow easily) to a metal similar to iron (meaning that electrons do flow easily through the material).

Drawing from these and other recent observations, the team concluded that while magnesium oxide is solid and non-conductive under conditions found on Earth in the present day, the early Earth's magma ocean might have been able to generate a magnetic field. Likewise, the metallic, liquid phase of magnesium oxide can exist today in the deep mantles of super-Earth planets, as can the newly observed solid phase.

"Our findings blur the line between traditional definitions of mantle and core material and provide a path for understanding how young or hot planets can generate and sustain magnetic fields," McWilliams said.

"This pioneering study takes advantage of new laser techniques to explore the nature of the materials that comprise the wide array of planets being discovered outside of our Solar System," said Russell Hemley, director of Carnegie's Geophysical Laboratory. "These methods allow investigations of the behavior of these materials at pressures and temperatures never before explored experimentally."

The experiments were carried out at the Omega Laser Facility of the University of Rochester, which is supported by DOE/NASA. The research involved a team of scientists from University of California Berkley and Lawrence Livermore National Laboratory.

This work was supported by the Department of Energy, the U.S. Army Research Office, A Krell Institute graduate fellowship, the DOE/NNSA National Laser User Facility Program, the Miller Institute for Basic Research in Science, and the University of California.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Stewart McWilliams | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Earth's magnetic field is not about to flip
25.11.2015 | The Earth Institute at Columbia University

nachricht Autumn gales again drive salt into the Baltic: Third Major Baltic Inflow within 1.5 years.
25.11.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>