Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magma power for geothermal energy?

18.02.2011
When a team of scientists drilling near an Icelandic volcano hit magma in 2009, they had to abandon their planned experiments on geothermal energy. But the mishap could point the way to an alternative source of geothermal power.

"Because we drilled into magma, this borehole could now be a really high-quality geothermal well," said Peter Schiffmann, professor of geology at UC Davis and a member of the research team along with fellow UC Davis geology professor Robert Zierenberg and UC Davis graduate student Naomi Marks. The project was led by Wilfred Elders, a geology professor at UC Riverside.

A paper describing geological results from the well was published this month in the journal Geology.

When tested, the magma well produced dry steam at 750 degrees Fahrenheit (400 degrees Celsius). The team estimated that this steam could generate up to 25 megawatts of electricity -- enough to power 25,000 to 30,000 homes.

That compares to 5 to 8 megawatts produced by a typical geothermal well, Elders said. Iceland already gets about one-third of its electricity and almost all of its home heating from geothermal sources.

The team was drilling into the Krafla caldera as part of the Iceland Deep Drilling Project, an industry-government consortium, to test whether "supercritical" water -- very hot water under very high pressure -- could be exploited as a source of power.

They planned to drill to 15,000 feet -- more than two miles deep-- but at 6,900 feet, magma (molten rock from the Earth's core) flowed into the well, forcing them to stop.

The composition of magma from the borehole is also providing insight into how magmas form beneath Iceland, Schiffmann said.

The team included researchers from two Icelandic power companies, HS Orka hf and Landsvirkjun Power; Iceland GeoSurvey; the U.S. Geological Survey; Stanford University; New Mexico Institute of Mining and Technology; and the University of Oregon, Eugene; as well as UC Davis and UC Riverside.

The work was funded by the National Science Foundation and the International Continental Scientific Drilling Program.

Media contact(s):
Peter Schiffmann, Geology, (530) 752-3669, pschiffmann@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu
http://www.news.ucdavis.edu/search/news_detail.lasso?id=9775

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>