Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar polar craters may be electrified

19.04.2010
As the solar wind flows over natural obstructions on the moon, it may charge polar lunar craters to hundreds of volts, according to new calculations by NASA's Lunar Science Institute team.

Polar lunar craters are of interest because of resources, including water ice, which exist there. The moon's orientation to the sun keeps the bottoms of polar craters in permanent shadow, allowing temperatures there to plunge below minus 400 degrees Fahrenheit, cold enough to store volatile material like water for billions of years.

"However, our research suggests that, in addition to the wicked cold, explorers and robots at the bottoms of polar lunar craters may have to contend with a complex electrical environment as well, which can affect surface chemistry, static discharge, and dust cling," said William Farrell of NASA's Goddard Space Flight Center, Greenbelt, Md. Farrell is lead author of a paper on this research published March 24 in the Journal of Geophysical Research. The research is part of the Lunar Science Institute's Dynamic Response of the Environment at the moon (DREAM) project.

"This important work by Dr. Farrell and his team is further evidence that our view on the moon has changed dramatically in recent years," said Gregory Schmidt, deputy director of the NASA Lunar Science Institute at NASA's Ames Research Center, Moffett Field, Calif. "It has a dynamic and fascinating environment that we are only beginning to understand."

Solar wind inflow into craters can erode the surface, which affects recently discovered water molecules. Static discharge could short out sensitive equipment, while the sticky and extremely abrasive lunar dust could wear out spacesuits and may be hazardous if tracked inside spacecraft and inhaled over long periods.

The solar wind is a thin gas of electrically charged components of atoms -- negatively charged electrons and positively charged ions -- that is constantly blowing from the surface of the sun into space. Since the moon is only slightly tilted compared to the sun, the solar wind flows almost horizontally over the lunar surface at the poles and along the region where day transitions to night, called the terminator.

The researchers created computer simulations to discover what happens when the solar wind flows over the rims of polar craters. They discovered that in some ways, the solar wind behaves like wind on Earth -- flowing into deep polar valleys and crater floors. Unlike wind on Earth, the dual electron-ion composition of the solar wind may create an unusual electric charge on the side of the mountain or crater wall; that is, on the inside of the rim directly below the solar wind flow.

Since electrons are over 1,000 times lighter than ions, the lighter electrons in the solar wind rush into a lunar crater or valley ahead of the heavy ions, creating a negatively charged region inside the crater. The ions eventually catch up, but rain into the crater at consistently lower concentrations than that of the electrons. This imbalance in the crater makes the inside walls and floor acquire a negative electric charge. The calculations reveal that the electron/ion separation effect is most extreme on a crater's leeward edge – along the inside crater wall and at the crater floor nearest the solar wind flow. Along this inner edge, the heavy ions have the greatest difficulty getting to the surface. Compared to the electrons, they act like a tractor-trailer struggling to follow a motorcycle; they just can't make as sharp a turn over the mountain top as the electrons. "The electrons build up an electron cloud on this leeward edge of the crater wall and floor, which can create an unusually large negative charge of a few hundred Volts relative to the dense solar wind flowing over the top," says Farrell.

The negative charge along this leeward edge won't build up indefinitely. Eventually, the attraction between the negatively charged region and positive ions in the solar wind will cause some other unusual electric current to flow. The team believes one possible source for this current could be negatively charged dust that is repelled by the negatively charged surface, gets levitated and flows away from this highly charged region. "The Apollo astronauts in the orbiting Command Module saw faint rays on the lunar horizon during sunrise that might have been scattered light from electrically lofted dust," said Farrell. "Additionally, the Apollo 17 mission landed at a site similar to a crater environment – the Taurus-Littrow valley. The Lunar Ejecta and Meteorite Experiment left by the Apollo 17 astronauts detected impacts from dust at terminator crossings where the solar wind is nearly-horizontal flowing, similar to the situation over polar craters."

Next steps for the team include more complex computer models. "We want to develop a fully three-dimensional model to examine the effects of solar wind expansion around the edges of a mountain. We now examine the vertical expansion, but we want to also know what happens horizontally," said Farrell. As early as 2012, NASA will launch the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission that will orbit the moon and could look for the dust flows predicted by the team's research.

This work was enabled by support from NASA Goddard's Internal Research and Development program and NASA's Lunar Science Institute. The team includes researchers from NASA Goddard, the University of California, Berkeley, and the University of Maryland, Baltimore County.

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>