Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LSU professor finds alternate explanation for dune formation on Saturn's largest moon

27.08.2009
A new and likely controversial paper has just been published online in Nature Geoscience by LSU Department of Geography and Anthropology Chair Patrick Hesp and United States Geological Survey scientist David Rubin.

The paper, "Multiple origins of linear dunes on Earth and Titan," examines a possible new mechanism for the development of very large linear dunes formed on the surface of Titan, Saturn's largest moon.

The authors examined the linear – or longitudinal – dunes that stretch across the surface of China's Qaidam Basin, finding them composed of sand and some salt and silt. The latter two elements make the dunes cohesive or sticky.

According to the study, this leads to a complete change in dune form from transverse dunes to linear dunes, even though the wind speed and direction does not change. Typically transverse dunes are formed by winds from a narrow directional range while longitudinal or linear dunes are formed by winds from two obliquely opposing directions. These findings offer an alternative interpretation of similar dunes found on Titan.

Hesp and Rubin suggest that if the giant linear dunes found on the surface of Titan are also formed from cohesive sediment, then they too could be formed by single-direction winds. This is in sharp contrast to earlier studies, which assumed that the sediments were loose and interpreted the dune shape as evidence of winds coming from alternating directions. The alternative hypothesis that Titan's linear dunes are formed in cohesive sediment has significant implications for studies on Titan; if the Hesp and Rubin alternative is correct, new hypotheses regarding the composition, origin, evolution, grain size, stickiness, quantity, global transport patterns and suitability for wind transport of Titan's sediment; the velocities, directions and seasonal patterns of Titan's winds; and overall surface wetness will all have to be completely reassessed.

For more information, contact Patrick Hesp at 225-205-6317 or pahesp@lsu.edu.
More news and information can be found on LSU's home page at www.lsu.edu

Ashley Berthelot | EurekAlert!
Further information:
http://www.lsu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>