Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost temperature sensors, tennis balls to monitor mountain snowpack

15.12.2009
Fictional secret agent Angus MacGyver knew that tough situations demand ingenuity. Jessica Lundquist takes a similar approach to studying snowfall.

The University of Washington assistant professor of civil and environmental engineering uses dime-sized temperature sensors, first developed for the refrigerated food industry, and tennis balls. In summer months she attaches the sensors to tennis balls that are weighted with gravel, and uses a dog-ball launcher to propel the devices high into alpine trees where they will record winter temperatures.

This isn't TV spy work -- it's science. Lundquist studies mountain precipitation to learn how changes in snowfall and snowmelt will affect the communities and environments at lower elevations. If the air temperature is above 32 degrees Fahrenheit the precipitation will fall as rain, but if it's below freezing, it will be snow.

"It's fun, like backyard science," Lundquist said of her sensors, which were originally designed to record temperature of frozen foods in transit. She began adapting the devices for environmental science while a postdoctoral researcher in Colorado and has refined them over the years. "It turns out they work phenomenally well."

Last year the American Geophysical Union awarded Lundquist its Cryosphere Young Investigators Award for her fieldwork. This week at the AGU's fall meeting in San Francisco she will present her low-cost temperature-sensing technology and some current applications.

Scientific weather stations typically cost about $10,000. Lundquist's system measures and records the temperature every hour for up to 11 months in remote locations for just $30 apiece. Another advantage is that they are easily deployed in rough terrain.

Her temperature sensors are a fun approach to studying a serious problem. One quarter of the Earth's continents have mountainous terrain, Lundquist said, and mountain rivers provide water for 40 percent of the world's population. Those mountain rivers are largely fed by snowmelt. But if winters become warmer due to climate change, the snow line is expected to inch up the mountainside, and snow is expected to melt earlier in the springtime.

"Mountains are the water towers of the world," Lundquist said. "We essentially use the snow as an extra reservoir. And you want that reservoir to hold the snow for as long as possible."

Her sensors are being used to improve computer models in areas where water managers want to know exactly where snow is accumulating and on what date it starts to melt.

"People typically assume that temperature decreases with elevation," Lundquist says. But actual mountain temperatures depend on the vegetation, slope and variable weather. "If you have a management decision, there's a specific place you have to make a decision for."

If more rain falls instead of snow, it will increase the risk of flooding during storms. Lundquist's sensors are currently being used by the California-Nevada River Forecasting Center as part of a project pinpointing at what elevation snow turns to rain, to improve storm flooding forecasts. As part of that project, UW graduate students are placing her sensors in river canyons that are too steep for traditional weather stations.

She is also deploying sensors in Yosemite National Park to see if earlier snowmelt may cause earlier drying of streambeds and affect vegetation growth in the Tuolumne Meadows. Her sensors there provide ground verification of satellite measurements.

The City of Seattle is also using Lundquist's sensors to study how different restoration approaches for trees in the Cedar River watershed, which supplies water to the city, affect snow retention.

"I have a lot of fun deploying my sensors because I love being in the mountains," Lundquist said. "They also sense conditions in these remote environments that we can't know about any other way."

For more information, contact Lundquist at jdlund@uw.edu or 206-685-7594. She will be at the AGU until Thursday and will be checking e-mail once a day.

Lundquist's Web page is at http://faculty.washington.edu/jdlund/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>