Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost temperature sensors, tennis balls to monitor mountain snowpack

15.12.2009
Fictional secret agent Angus MacGyver knew that tough situations demand ingenuity. Jessica Lundquist takes a similar approach to studying snowfall.

The University of Washington assistant professor of civil and environmental engineering uses dime-sized temperature sensors, first developed for the refrigerated food industry, and tennis balls. In summer months she attaches the sensors to tennis balls that are weighted with gravel, and uses a dog-ball launcher to propel the devices high into alpine trees where they will record winter temperatures.

This isn't TV spy work -- it's science. Lundquist studies mountain precipitation to learn how changes in snowfall and snowmelt will affect the communities and environments at lower elevations. If the air temperature is above 32 degrees Fahrenheit the precipitation will fall as rain, but if it's below freezing, it will be snow.

"It's fun, like backyard science," Lundquist said of her sensors, which were originally designed to record temperature of frozen foods in transit. She began adapting the devices for environmental science while a postdoctoral researcher in Colorado and has refined them over the years. "It turns out they work phenomenally well."

Last year the American Geophysical Union awarded Lundquist its Cryosphere Young Investigators Award for her fieldwork. This week at the AGU's fall meeting in San Francisco she will present her low-cost temperature-sensing technology and some current applications.

Scientific weather stations typically cost about $10,000. Lundquist's system measures and records the temperature every hour for up to 11 months in remote locations for just $30 apiece. Another advantage is that they are easily deployed in rough terrain.

Her temperature sensors are a fun approach to studying a serious problem. One quarter of the Earth's continents have mountainous terrain, Lundquist said, and mountain rivers provide water for 40 percent of the world's population. Those mountain rivers are largely fed by snowmelt. But if winters become warmer due to climate change, the snow line is expected to inch up the mountainside, and snow is expected to melt earlier in the springtime.

"Mountains are the water towers of the world," Lundquist said. "We essentially use the snow as an extra reservoir. And you want that reservoir to hold the snow for as long as possible."

Her sensors are being used to improve computer models in areas where water managers want to know exactly where snow is accumulating and on what date it starts to melt.

"People typically assume that temperature decreases with elevation," Lundquist says. But actual mountain temperatures depend on the vegetation, slope and variable weather. "If you have a management decision, there's a specific place you have to make a decision for."

If more rain falls instead of snow, it will increase the risk of flooding during storms. Lundquist's sensors are currently being used by the California-Nevada River Forecasting Center as part of a project pinpointing at what elevation snow turns to rain, to improve storm flooding forecasts. As part of that project, UW graduate students are placing her sensors in river canyons that are too steep for traditional weather stations.

She is also deploying sensors in Yosemite National Park to see if earlier snowmelt may cause earlier drying of streambeds and affect vegetation growth in the Tuolumne Meadows. Her sensors there provide ground verification of satellite measurements.

The City of Seattle is also using Lundquist's sensors to study how different restoration approaches for trees in the Cedar River watershed, which supplies water to the city, affect snow retention.

"I have a lot of fun deploying my sensors because I love being in the mountains," Lundquist said. "They also sense conditions in these remote environments that we can't know about any other way."

For more information, contact Lundquist at jdlund@uw.edu or 206-685-7594. She will be at the AGU until Thursday and will be checking e-mail once a day.

Lundquist's Web page is at http://faculty.washington.edu/jdlund/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>