Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low-cost temperature sensors, tennis balls to monitor mountain snowpack

15.12.2009
Fictional secret agent Angus MacGyver knew that tough situations demand ingenuity. Jessica Lundquist takes a similar approach to studying snowfall.

The University of Washington assistant professor of civil and environmental engineering uses dime-sized temperature sensors, first developed for the refrigerated food industry, and tennis balls. In summer months she attaches the sensors to tennis balls that are weighted with gravel, and uses a dog-ball launcher to propel the devices high into alpine trees where they will record winter temperatures.

This isn't TV spy work -- it's science. Lundquist studies mountain precipitation to learn how changes in snowfall and snowmelt will affect the communities and environments at lower elevations. If the air temperature is above 32 degrees Fahrenheit the precipitation will fall as rain, but if it's below freezing, it will be snow.

"It's fun, like backyard science," Lundquist said of her sensors, which were originally designed to record temperature of frozen foods in transit. She began adapting the devices for environmental science while a postdoctoral researcher in Colorado and has refined them over the years. "It turns out they work phenomenally well."

Last year the American Geophysical Union awarded Lundquist its Cryosphere Young Investigators Award for her fieldwork. This week at the AGU's fall meeting in San Francisco she will present her low-cost temperature-sensing technology and some current applications.

Scientific weather stations typically cost about $10,000. Lundquist's system measures and records the temperature every hour for up to 11 months in remote locations for just $30 apiece. Another advantage is that they are easily deployed in rough terrain.

Her temperature sensors are a fun approach to studying a serious problem. One quarter of the Earth's continents have mountainous terrain, Lundquist said, and mountain rivers provide water for 40 percent of the world's population. Those mountain rivers are largely fed by snowmelt. But if winters become warmer due to climate change, the snow line is expected to inch up the mountainside, and snow is expected to melt earlier in the springtime.

"Mountains are the water towers of the world," Lundquist said. "We essentially use the snow as an extra reservoir. And you want that reservoir to hold the snow for as long as possible."

Her sensors are being used to improve computer models in areas where water managers want to know exactly where snow is accumulating and on what date it starts to melt.

"People typically assume that temperature decreases with elevation," Lundquist says. But actual mountain temperatures depend on the vegetation, slope and variable weather. "If you have a management decision, there's a specific place you have to make a decision for."

If more rain falls instead of snow, it will increase the risk of flooding during storms. Lundquist's sensors are currently being used by the California-Nevada River Forecasting Center as part of a project pinpointing at what elevation snow turns to rain, to improve storm flooding forecasts. As part of that project, UW graduate students are placing her sensors in river canyons that are too steep for traditional weather stations.

She is also deploying sensors in Yosemite National Park to see if earlier snowmelt may cause earlier drying of streambeds and affect vegetation growth in the Tuolumne Meadows. Her sensors there provide ground verification of satellite measurements.

The City of Seattle is also using Lundquist's sensors to study how different restoration approaches for trees in the Cedar River watershed, which supplies water to the city, affect snow retention.

"I have a lot of fun deploying my sensors because I love being in the mountains," Lundquist said. "They also sense conditions in these remote environments that we can't know about any other way."

For more information, contact Lundquist at jdlund@uw.edu or 206-685-7594. She will be at the AGU until Thursday and will be checking e-mail once a day.

Lundquist's Web page is at http://faculty.washington.edu/jdlund/.

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>