Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loss of Eastern Hemlock Affects Peak Flows after Extreme Storm Events

13.08.2014

The loss of eastern hemlock could affect water yield and storm flow from forest watersheds in the southern Appalachians, according to a new study by U.S. Forest Service scientists at the Coweeta Hydrologic Laboratory (Coweeta) located in Otto, North Carolina. The article was just published online in the journal Ecohydrology.

“Eastern hemlock trees have died throughout much of their range due to the hemlock woolly adelgid, an exotic invasive insect,” said Steven Brantley, a post-doctoral researcher at Coweeta and lead author of the paper.

“Though this insect has decimated whole stands of eastern hemlock along streams in the southern Appalachians, few studies have addressed the effects of this insect outbreak on landscape-level watershed processes such as stream flow.”

Because of its dense evergreen foliage, eastern hemlock plays an important role in the water cycle of southern Appalachian forests, regulating stream flow year round. Although eastern hemlock rarely dominates the region’s forests, the tree is considered a foundation species in the streamside areas called riparian zones.

Previous research by the Coweeta scientists led them to suspect that the loss of eastern hemlock would cause stream flow to increase over the short-term, especially in the dormant fall/winter season, then decrease over the longer term, with small effects annually. They also thought that peak flows after storms would increase, especially in the dormant season.

For this study, Coweeta researchers used a paired watershed approach—one watershed with a major hemlock component in the riparian forest area, the other reference watershed with very little—to determine the effects of hemlock mortality on stream flow and peak flow following storms.

Since hemlock woolly adelgid was first detected in 2003, all the eastern hemlock trees in both watersheds died, resulting in a loss of 26 percent of forest basal area (that area occupied by tree trunks and stems) in the riparian area of the first watershed compared to a 4 percent loss in the reference watershed riparian forest.

“Instead of finding that stream flow increased after hemlock mortality, we found no real change in any year after infestation,” said Brantley. “We did find, however, that peak stream flow after the largest storm events increased by more than 20 percent.”

“The fact that hemlock loss didn’t increase water yield in the short-term was due to the rapid growth response of co-occurring trees and shrubs in the riparian forests; and peak flows were likely higher after hemlock loss due to lower interception by the evergreen canopy in the riparian zone,” said Brantley.

“This latter finding suggests that riparian trees may play a disproportionally important role in regulating watershed processes than trees that aren’t adjacent to the riparian zone.”

“It also has implications for the more extreme rain events predicted under climate change,” he added. “Losing foundation species in forested riparian zones could amplify the effects of altered precipitation regimes.”

The study was conducted at the U.S. Forest Service Coweeta Hydrologic Laboratory, in the Nantahala Mountains of western North Carolina. Coweeta is one of the oldest continuous environmental studies in North America. Since 1934, precipitation, temperature, and stream flow have been continuously recorded at Coweeta, a U.S. Forest Service Southern Research Station facility. 

Access the full text of the article at www.treesearch.fs.fed.us/pubs/46230.

For more information, email Chelcy Miniat at cfminiat@fs.fed.us.

Science Contact
Chelcy Ford Miniat
828-524-2128 Ext. 118
crford@fs.fed.us

News Release Contact
Zoë Hoyle
828-257-4388
zhoyle@fs.fed.us

Chelcy Miniat | Eurek Alert!
Further information:
http://www.srs.fs.usda.gov/news/573

Further reports about: Insect outbreaks USDA forests hemlock trees insect precipitation regulating short-term species storms

More articles from Earth Sciences:

nachricht What would a tsunami in the Mediterranean look like?
27.08.2015 | European Geosciences Union

nachricht NASA sees former Typhoon Atsani's remnants affecting Alaska
27.08.2015 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

Im Focus: A Grand Voyage for Tiny Organisms

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants

27.08.2015 | Life Sciences

Hypoallergenic parks: Coming soon?

27.08.2015 | Health and Medicine

Stiffer breast tissue in obese women promotes tumors

27.08.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>