Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Angeles air pollution declining, losing its sting

05.06.2013
The cleanup of California’s tailpipe emissions over the last few decades has not only reduced ozone pollution in the Los Angeles area.

It has also altered the pollution chemistry in the atmosphere, making the eye-stinging “organic nitrate” component of air pollution plummet, according to a new study.

The scientists analyzed new data from research aircraft along with archived data going back a half-century to produce a comprehensive examination of air pollution in the Los Angeles region.

“This is good news: LA’s air has lost a lot of its ‘sting,’” said lead author Ilana Pollack, a scientist from NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “Our study shows exactly how that happened, and confirms that California’s policies to control emissions have worked as intended.”

An article about the new findings by Pollack and her colleagues was accepted for publication last month in the Journal of Geophysical Research:Atmospheres, a journal of the American Geophysical Union (AGU).

Scientists have studied the origins and levels of air pollutants in the South Coast Air Basin – the Los Angeles urban area – for a long time. Since the 1960s, they have measured levels of ozone and other air pollutants that are formed in the atmosphere (so-called “secondary” pollutants) and the ingredients, or “precursors,” that form them: volatile organic compounds (VOCs) and nitrogen oxides (NOx). These precursors are directly emitted from various sources, primarily vehicle exhaust in LA but also from power-generating facilities, industry, and natural sources such as vegetation.

As studies began to identify the high levels of air pollution and its causes, policies and controls were implemented to restrict emissions of the NOx and VOC ingredients that result in ozone and other secondary air pollutants. Although the population in the Southern California region has tripled between 1960 and 2010, and the number of vehicles has increased by a similar factor, research studies have indicated that air pollution in the region has decreased—as a result of these policies.

To pin down the exact nature of the downward trends and the related changes in the chemistry causing the declining levels of pollutants, Pollack and her team examined new data from research aircraft and archived data from roadside monitors and ground-based instruments. In doing so, they generated a synthesis of information on ozone, other secondary pollutants and pollutant precursors from 1960 to 2010. This work included measurements of ozone and nitrogen oxides collected by Pollack and her colleagues over the South Coast Air Basin using instruments aboard NOAA’s P-3 research aircraft during a California-based mission in 2010.

The exhaustive approach paid off, and gave the scientists new insights into the changing chemistry of LA’s air.

“The emission reductions have ‘flipped’ some of the chemistry that takes place in the atmosphere,” said Pollack, who works at NOAA’s Earth System Research Laboratory in Boulder, Colo. “The relevant precursors in the atmosphere now favor chemical pathways that are more likely to produce nitric acid, and less likely to make ozone and peroxyacetyl nitrate (PAN).”

PAN is the organic nitrate compound historically associated with eye irritation (the “sting”) in Los Angeles smog.

“Compiling long-term trends in precursors and secondary products, then seeing all the data together on paper, really made changes in the chemistry stand out,” Pollack said.

The researchers’ analysis showed that emission control measures in Southern California have been effective. Although emissions of precursors have declined, motor vehicles remain the dominant source of emissions in Los Angeles.

Understanding the past and present chemistry in the atmosphere that creates air pollution is critical to being able to estimate how much pollution will be formed in future years, Pollack said. “To most people the big deal is that things have got a lot better,” Pollack said. “But as scientists we want to know how they have got better.”

The researchers hope that this new insight will provide useful information to the policy makers who will be crafting the next generation of policies aimed at improving air quality in the region.

“Our work aims to interpret the past and present observations, with an eye toward informing future decisions,” Pollack said.
Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50472/abstract

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at PWeiss@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title:
"Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010"
Authors:
Ilana B. Pollack Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA; and Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; Thomas B. Ryerson and Michael Trainer Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; J. A. Neuman Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA; and Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; James M. Roberts and David D. Parrish Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA.

Contact information for the author:

Ilana Pollack, CIRES scientist, (303)-497-5826, ilana.pollack@noaa.gov

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-26.shtml

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>