Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Los Angeles air pollution declining, losing its sting

The cleanup of California’s tailpipe emissions over the last few decades has not only reduced ozone pollution in the Los Angeles area.

It has also altered the pollution chemistry in the atmosphere, making the eye-stinging “organic nitrate” component of air pollution plummet, according to a new study.

The scientists analyzed new data from research aircraft along with archived data going back a half-century to produce a comprehensive examination of air pollution in the Los Angeles region.

“This is good news: LA’s air has lost a lot of its ‘sting,’” said lead author Ilana Pollack, a scientist from NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “Our study shows exactly how that happened, and confirms that California’s policies to control emissions have worked as intended.”

An article about the new findings by Pollack and her colleagues was accepted for publication last month in the Journal of Geophysical Research:Atmospheres, a journal of the American Geophysical Union (AGU).

Scientists have studied the origins and levels of air pollutants in the South Coast Air Basin – the Los Angeles urban area – for a long time. Since the 1960s, they have measured levels of ozone and other air pollutants that are formed in the atmosphere (so-called “secondary” pollutants) and the ingredients, or “precursors,” that form them: volatile organic compounds (VOCs) and nitrogen oxides (NOx). These precursors are directly emitted from various sources, primarily vehicle exhaust in LA but also from power-generating facilities, industry, and natural sources such as vegetation.

As studies began to identify the high levels of air pollution and its causes, policies and controls were implemented to restrict emissions of the NOx and VOC ingredients that result in ozone and other secondary air pollutants. Although the population in the Southern California region has tripled between 1960 and 2010, and the number of vehicles has increased by a similar factor, research studies have indicated that air pollution in the region has decreased—as a result of these policies.

To pin down the exact nature of the downward trends and the related changes in the chemistry causing the declining levels of pollutants, Pollack and her team examined new data from research aircraft and archived data from roadside monitors and ground-based instruments. In doing so, they generated a synthesis of information on ozone, other secondary pollutants and pollutant precursors from 1960 to 2010. This work included measurements of ozone and nitrogen oxides collected by Pollack and her colleagues over the South Coast Air Basin using instruments aboard NOAA’s P-3 research aircraft during a California-based mission in 2010.

The exhaustive approach paid off, and gave the scientists new insights into the changing chemistry of LA’s air.

“The emission reductions have ‘flipped’ some of the chemistry that takes place in the atmosphere,” said Pollack, who works at NOAA’s Earth System Research Laboratory in Boulder, Colo. “The relevant precursors in the atmosphere now favor chemical pathways that are more likely to produce nitric acid, and less likely to make ozone and peroxyacetyl nitrate (PAN).”

PAN is the organic nitrate compound historically associated with eye irritation (the “sting”) in Los Angeles smog.

“Compiling long-term trends in precursors and secondary products, then seeing all the data together on paper, really made changes in the chemistry stand out,” Pollack said.

The researchers’ analysis showed that emission control measures in Southern California have been effective. Although emissions of precursors have declined, motor vehicles remain the dominant source of emissions in Los Angeles.

Understanding the past and present chemistry in the atmosphere that creates air pollution is critical to being able to estimate how much pollution will be formed in future years, Pollack said. “To most people the big deal is that things have got a lot better,” Pollack said. “But as scientists we want to know how they have got better.”

The researchers hope that this new insight will provide useful information to the policy makers who will be crafting the next generation of policies aimed at improving air quality in the region.

“Our work aims to interpret the past and present observations, with an eye toward informing future decisions,” Pollack said.
Notes for Journalists

Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this accepted article by clicking on this link:

Or, you may order a copy of the final paper by emailing your request to Peter Weiss at Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

"Trends in ozone, its precursors, and related secondary oxidation products in Los Angeles, California: A synthesis of measurements from 1960 to 2010"
Ilana B. Pollack Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA; and Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; Thomas B. Ryerson and Michael Trainer Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; J. A. Neuman Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA; and Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA; James M. Roberts and David D. Parrish Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA.

Contact information for the author:

Ilana Pollack, CIRES scientist, (303)-497-5826,

Peter Weiss | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>