Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos science sleuth on the trail of a Martian mystery

20.03.2013
Postdoctoral researcher sees promise in data from cutting room floor
When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza.

During a poster session today at the 44th Annual Lunar and Planetary Science Conference at The Woodlands, Texas, Lanza described how the laser-shooting ChemCam instrument aboard the Curiosity rover currently searching the surface of Mars for signs of habitability has shown what appears to be a common feature on the surface of some very different Martian rocks during Curiosity’s first 90 days on the Red Planet.

But exactly what that common feature is remains an intriguing mystery—and one that Lanza intends to solve.

The ChemCam instrument uses an extremely powerful laser to vaporize a pinpoint of rock surface. The instrument then reads the chemical composition of the vaporized sample with a spectrometer. The highly accurate laser can fire multiple pulses in the same spot, providing scientists with an opportunity to gently interrogate a rock sample, even up to a millimeter in depth. Many rocks are zapped 30 to 50 times in a single location, and one rock was zapped 600 times.

Members of the ChemCam team generally discard results from the first five laser blasts because of a belief that after the first five blasts, the laser has penetrated to a depth that provides a true representative sample of rock chemistry.

Instead of tossing out those data, however, Lanza looked at them specifically across a diverse set of Martian rocks. She found that the first five shots had chemical similarities regardless the rock type. What’s more, after five shots, like other scientists had noticed, the spectrum from the vaporized rock stabilized into a representative sample of the rock type below.

“Why is it always five shots?” Lanza wondered.

It could be the first five shots were reading a layer of dust that had settled onto the surface of every rock, but results in laboratories on Earth seem to indicate that the first laser blast creates a tiny shockwave that is very effective at clearing dust from the sample. Therefore, if the first blast is dusting off the rocks, the remaining four blasts could be showing that Martian rocks are coated by a substance, similar in structure if not composition, to the dark rock varnish appearing on Earth rocks in arid locations like the desert Southwest.

“The thing about rock varnishes is the mechanism behind why they form is not clearly understood,” Lanza said. “Some people believe that rock varnish results from an interaction of small amounts of water from humidity in the air with the surface of rocks—a chemical reaction that forms a coating. Others think there could be a biological component to the formation of rock varnishes, such as bacteria or fungi that interact with dust on the rocks and excrete varnish components onto the surface.”

Lanza is quick to point out that she’s making no concrete claim as to the identity or origin of whatever is being seen during the first five shots of each ChemCam sampling. The common signature from the first five blasts could indeed be entirely surface dust, or it could be a rock coating or a rind formed by natural weathering processes.

As the mission progresses, Lanza hopes that integrating other instruments aboard Curiosity with ChemCam sampling activities could help rule out unknowns such as surface dust, while careful experiments here on Earth could provide crucial clues for solving the Martian mystery of the first five shots.

“If we can find a reason for this widespread alteration of the surface of Martian rocks, it will tell us something about the Martian environment and the amount of water present there,” Lanza said. “It will also allow us to make the argument that what we’re seeing is the result of some kind of current geological process, which could give us insight into extraterrestrial geology or even terrestrial geology if what we’re seeing is a coating similar to what we find here on Earth.”

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

Further reports about: Alamos ChemCam Curiosity Earth's magnetic field Lanza Mars Martian Winds

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>