Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos science sleuth on the trail of a Martian mystery

20.03.2013
Postdoctoral researcher sees promise in data from cutting room floor
When it comes to examining the surface of rocks on Mars with a high-powered laser, five is a magic number for Los Alamos National Laboratory postdoctoral researcher Nina Lanza.

During a poster session today at the 44th Annual Lunar and Planetary Science Conference at The Woodlands, Texas, Lanza described how the laser-shooting ChemCam instrument aboard the Curiosity rover currently searching the surface of Mars for signs of habitability has shown what appears to be a common feature on the surface of some very different Martian rocks during Curiosity’s first 90 days on the Red Planet.

But exactly what that common feature is remains an intriguing mystery—and one that Lanza intends to solve.

The ChemCam instrument uses an extremely powerful laser to vaporize a pinpoint of rock surface. The instrument then reads the chemical composition of the vaporized sample with a spectrometer. The highly accurate laser can fire multiple pulses in the same spot, providing scientists with an opportunity to gently interrogate a rock sample, even up to a millimeter in depth. Many rocks are zapped 30 to 50 times in a single location, and one rock was zapped 600 times.

Members of the ChemCam team generally discard results from the first five laser blasts because of a belief that after the first five blasts, the laser has penetrated to a depth that provides a true representative sample of rock chemistry.

Instead of tossing out those data, however, Lanza looked at them specifically across a diverse set of Martian rocks. She found that the first five shots had chemical similarities regardless the rock type. What’s more, after five shots, like other scientists had noticed, the spectrum from the vaporized rock stabilized into a representative sample of the rock type below.

“Why is it always five shots?” Lanza wondered.

It could be the first five shots were reading a layer of dust that had settled onto the surface of every rock, but results in laboratories on Earth seem to indicate that the first laser blast creates a tiny shockwave that is very effective at clearing dust from the sample. Therefore, if the first blast is dusting off the rocks, the remaining four blasts could be showing that Martian rocks are coated by a substance, similar in structure if not composition, to the dark rock varnish appearing on Earth rocks in arid locations like the desert Southwest.

“The thing about rock varnishes is the mechanism behind why they form is not clearly understood,” Lanza said. “Some people believe that rock varnish results from an interaction of small amounts of water from humidity in the air with the surface of rocks—a chemical reaction that forms a coating. Others think there could be a biological component to the formation of rock varnishes, such as bacteria or fungi that interact with dust on the rocks and excrete varnish components onto the surface.”

Lanza is quick to point out that she’s making no concrete claim as to the identity or origin of whatever is being seen during the first five shots of each ChemCam sampling. The common signature from the first five blasts could indeed be entirely surface dust, or it could be a rock coating or a rind formed by natural weathering processes.

As the mission progresses, Lanza hopes that integrating other instruments aboard Curiosity with ChemCam sampling activities could help rule out unknowns such as surface dust, while careful experiments here on Earth could provide crucial clues for solving the Martian mystery of the first five shots.

“If we can find a reason for this widespread alteration of the surface of Martian rocks, it will tell us something about the Martian environment and the amount of water present there,” Lanza said. “It will also allow us to make the argument that what we’re seeing is the result of some kind of current geological process, which could give us insight into extraterrestrial geology or even terrestrial geology if what we’re seeing is a coating similar to what we find here on Earth.”

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

Further reports about: Alamos ChemCam Curiosity Earth's magnetic field Lanza Mars Martian Winds

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>