Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-Term Sea Level Rise in Washington, D.C. Could Have Significant Impact

05.11.2012
The nation’s capital is likely to face flooding and infrastructure damage in both the short- and long-term brought about by sea level rise (SLR), current trends and predicted increases suggest.

The rise is linked to thermal expansion of the oceans and melting of global ice sheets as a result of global warming, researchers say in a new study focused on real-estate property and government infrastructure impacts in Washington, D.C.

Short-term predictions suggest that sea level will rise 0.1 meters by the year 2043 and flood about 103 properties and other infrastructure, costing the city about $2.1 billion. By 2150, 0.4 meters of SLR is likely to impact 142 properties. For long-term effects if sea level rise were to reach 5.0 meters, the authors warn of significant damages in excess of $24.6 billion to commercial buildings, military installations, museums and a number of government agencies, including the Federal Bureau of Investigation, the Justice Department, the Internal Revenue Service, the Federal Trade Commission and the Department of Education.

While a rise of 5.0 meters is considered unlikely, recent weather events such as Tropical Storm Isabel in 2003 and high tides and rains in April of 2011 triggered waterfront flooding in the city and Northern Virginia. The authors warn that extreme weather may increase the chances of flooding as sea levels increase.

The study, by University of Maryland researchers, examines its results in comparison with a set of models generated by authoritative international bodies and experts. Researchers Bilal Ayyub, Haralamb G. Braileanu and Naeem Qureshi of the Center for Technology and Systems Management of the Department of Civil and Environmental Engineering at the College Park campus of the University of Maryland published the paper. The article, entitled “Prediction and Impact of Sea Level Rise on Properties and Infrastructure of Washington, DC,” appears in the November 2012 issue of Risk Analysis, published by the Society for Risk Analysis.

The research relies on an unrealistically optimistic model in which SLR increases in a straight line consistent with recent trends. Other studies suggest the pattern shows increasing rates of SLR leading to, for example, a one meter SLR by the year 2100 compared with the 0.4 meter SLR rise employed in this analysis. Thus, the authors say their approach may underestimate the city’s SLR in the future.

To fully assess the potential damage, the researchers used Geographic Information System (GIS) tools and data from government agencies as well as real-estate listings for property values. The results show that the current rate of SLR in Washington, D.C., is about 3.16 millimeters per year and that at the low levels of increase expected in the near future, SLR would lead to a minimal loss of city area. But if 0.1 meters of SLR occurs by 2043 as the authors expect, nearby Bolling Air Force Base would lose 23 buildings.

With dramatic SLR increases over the long term, predictions suggest that billions of dollars in damage would result. Above 2.5 meters of SLR, the authors write, the “numbers become staggering. . . 302 properties are affected, costing $6.1 billion, finally at 5.0 meters of SLR, the numbers increase to a dramatic 1,225 properties and at least $24.6 billion” in damage. They add that these monetary estimates focus on real-estate property values and exclude additional damage valuations to water and sewer systems and other infrastructure, as well as to federal and industrial facilities, which they say should be included.

The authors conclude, “Decisions must be made in the near future by lawmakers or city planners on how to reduce the impact of and adapt to SLR. A planned retreat is not an option when dealing with SLR in such an important area. . . A short-term solution, like creating a small flood barrier, may give the city time to examine this challenge and produce cost-effective solutions. Cost-effective methods to deal with SLR should be developed, and long-term solutions that extend well into this millennium are necessary.”

Risk Analysis: An International Journal is published by the nonprofit Society for Risk Analysis (SRA). SRA is a multidisciplinary, interdisciplinary, scholarly, international society that provides an open forum for all those who are interested in risk analysis. Risk analysis is defined broadly to include risk assessment, risk characterization, risk communication, risk management, and policy relating to risk, in the context of risks of concern to individuals, to public and private sector organizations, and to society at a local, regional, national, or global level. http://www.sra.org

Contact: Steve Gibb, 202.422.5425 skgibb@aol.com to arrange an interview with the authors.

Note to editors: This study is available upon request from Steve Gibb or here: http://onlinelibrary.wiley.com/doi/10.1111/j.1539-6924.2011.01710.x/full

Steve Gibb | EurekAlert!
Further information:
http://www.sra.org

More articles from Earth Sciences:

nachricht Errant Galileo satellites will be used for research on Einstein’s general theory of relativity
31.08.2015 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht Time travel into the past of marginal seas: IOW expedition explores Canadian coastal waters
31.08.2015 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Production research by Fraunhofer IAO honored with three awards at the ICPR 2015

31.08.2015 | Awards Funding

Single-Crystal Phosphors Suitable for Ultra-Bright, High-Power White Light Sources

31.08.2015 | Materials Sciences

Manchester Team Reveal New, Stable 2D Materials

31.08.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>