Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Long-term predictions for Miami sea level rise could be available relatively soon


City could know as early as 2020 how high sea level will go in the next century

Miami could know as early as 2020 how high sea levels will rise into the next century, according to a team of researchers including Florida International University scientist Rene Price.

The skyline of downtown Miami along Biscayne Bay: What will it look like in 20, 50, 100 years?

Credit: Virginia Fourqurean

Price is also affiliated with the National Science Foundation's (NSF) Florida Coastal Everglades Long-Term Ecological Research (LTER) site, one of 25 such NSF LTER sites in ecosystems from coral reefs to deserts, mountains to salt marshes around the world.

Scientists conclude that sea level rise is one of the most certain consequences of climate change.

But the speed and long-term height of that rise are unknown. Some researchers believe that sea level rise is accelerating, some suggest the rate is holding steady, while others say it's decelerating.

With long-term data showing that global sea levels are steadily rising at 2.8 millimeters per year, and climate models indicating that the rate could accelerate over time, Price posed a question to colleagues: How soon will Miami residents know what sea levels will be in the year 2100?

"In Miami, we're at the forefront of sea level rise," Price says. "With the uncertainty in what we currently know, I was looking for information that could help us plan better for the long-term."

Price and a team of international researchers set out to answer the question.

They analyzed data from 10 sea level monitoring stations throughout the world.

They looked into the future by analyzing the past.

The researchers examined historical data to identify the timing at which accelerations might first be recognized in a significant manner and extended projections through 2100.

The findings are published in this week's issue of the journal Nature Communications.

"Sea level rise will have major effects on natural and built coastal environments," says David Garrison, program director in NSF's Division of Ocean Sciences, which co-funds the NSF LTER network with NSF's Division of Environmental Biology.

"Being able to detect and predict the pace of sea level rise is critical to being able to adapt to future changes in coastal regions," says Garrison.

Price says the information provided should offer some comfort to those living with this uncertainty.

"Our results show that by 2020 to 2030, we could have some statistical certainty of what the sea level rise situation will look like," she says.

"That means we'll know what to expect and have 70 years to plan. In a subject that has so much uncertainty, this gives us the gift of long-term planning."

Conservative projections suggest that sea level could rise by .3 meters by 2100, but with acceleration, some scientists believe that number will be closer to 1 meter.

"Areas of Miami Beach could experience constant flooding," says Price.

"The Everglades and mangroves may not be able to keep up. Mangroves are very important to South Florida, and their loss would likely mean more land erosion.

"We could see large portions of the Everglades taken over by the ocean. Areas that are freshwater today could become saltwater by 2100."

As cities, including Miami, continue to plan for long-term solutions to sea level rise, Price says she was surprised to discover that in the span of 20 years, scientists would be in a position to predict the long-term situation for Miami and other coastal areas across the planet.

Scientists should continue to crunch the numbers every decade, says Price, creating more certainty in long-term planning--and helping develop solutions for a changing planet.

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734,
JoAnn Adkins, FIU, (305) 348-0398,

Related Websites
NSF Long-Term Ecological Research Network:
NSF Florida Coastal Everglades (FCE) LTER Site:
NSF Publication: Discoveries in Long-Term Ecological Research:
NSF LTER Discovery Article Series: The Search for White Gold:
NSF LTER FCE News: Seagrasses Can Store as Much Carbon as Forests:
NSF LTER FCE News: Gulf Oil Spill: NSF Funds Research on Impacts to Florida Everglades:
NSF LTER FCE News: Where Does Charcoal, or Black Carbon, in Soils Go?:

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:

Further reports about: Carbon Coastal Environmental Biology NSF Ocean coral reefs freshwater rise salt marshes sea level sea level rise

More articles from Earth Sciences:

nachricht Field widens for environments, microbes that produce toxic form of mercury
12.10.2015 | DOE/Oak Ridge National Laboratory

nachricht Unexpected information about Earth's climate history from Yellow River sediment
09.10.2015 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New Oregon approach for 'nanohoops' could energize future devices

13.10.2015 | Life Sciences

Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix

13.10.2015 | Life Sciences

Breast cancer drug beats superbug

13.10.2015 | Health and Medicine

More VideoLinks >>>