Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-term predictions for Miami sea level rise could be available relatively soon

16.04.2014

City could know as early as 2020 how high sea level will go in the next century

Miami could know as early as 2020 how high sea levels will rise into the next century, according to a team of researchers including Florida International University scientist Rene Price.


The skyline of downtown Miami along Biscayne Bay: What will it look like in 20, 50, 100 years?

Credit: Virginia Fourqurean

Price is also affiliated with the National Science Foundation's (NSF) Florida Coastal Everglades Long-Term Ecological Research (LTER) site, one of 25 such NSF LTER sites in ecosystems from coral reefs to deserts, mountains to salt marshes around the world.

Scientists conclude that sea level rise is one of the most certain consequences of climate change.

But the speed and long-term height of that rise are unknown. Some researchers believe that sea level rise is accelerating, some suggest the rate is holding steady, while others say it's decelerating.

With long-term data showing that global sea levels are steadily rising at 2.8 millimeters per year, and climate models indicating that the rate could accelerate over time, Price posed a question to colleagues: How soon will Miami residents know what sea levels will be in the year 2100?

"In Miami, we're at the forefront of sea level rise," Price says. "With the uncertainty in what we currently know, I was looking for information that could help us plan better for the long-term."

Price and a team of international researchers set out to answer the question.

They analyzed data from 10 sea level monitoring stations throughout the world.

They looked into the future by analyzing the past.

The researchers examined historical data to identify the timing at which accelerations might first be recognized in a significant manner and extended projections through 2100.

The findings are published in this week's issue of the journal Nature Communications.

"Sea level rise will have major effects on natural and built coastal environments," says David Garrison, program director in NSF's Division of Ocean Sciences, which co-funds the NSF LTER network with NSF's Division of Environmental Biology.

"Being able to detect and predict the pace of sea level rise is critical to being able to adapt to future changes in coastal regions," says Garrison.

Price says the information provided should offer some comfort to those living with this uncertainty.

"Our results show that by 2020 to 2030, we could have some statistical certainty of what the sea level rise situation will look like," she says.

"That means we'll know what to expect and have 70 years to plan. In a subject that has so much uncertainty, this gives us the gift of long-term planning."

Conservative projections suggest that sea level could rise by .3 meters by 2100, but with acceleration, some scientists believe that number will be closer to 1 meter.

"Areas of Miami Beach could experience constant flooding," says Price.

"The Everglades and mangroves may not be able to keep up. Mangroves are very important to South Florida, and their loss would likely mean more land erosion.

"We could see large portions of the Everglades taken over by the ocean. Areas that are freshwater today could become saltwater by 2100."

As cities, including Miami, continue to plan for long-term solutions to sea level rise, Price says she was surprised to discover that in the span of 20 years, scientists would be in a position to predict the long-term situation for Miami and other coastal areas across the planet.

Scientists should continue to crunch the numbers every decade, says Price, creating more certainty in long-term planning--and helping develop solutions for a changing planet.

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
JoAnn Adkins, FIU, (305) 348-0398, jadkins@fiu.edu

Related Websites
NSF Long-Term Ecological Research Network: http://www.lternet.edu
NSF Florida Coastal Everglades (FCE) LTER Site: http://www.lternet.edu/sites/fce
NSF Publication: Discoveries in Long-Term Ecological Research: http://www.nsf.gov/pubs/2013/nsf13083/nsf13083.pdf
NSF LTER Discovery Article Series: The Search for White Gold: http://nsf.gov/discoveries/disc_summ.jsp?cntn_id=127580
NSF LTER FCE News: Seagrasses Can Store as Much Carbon as Forests: http://www.nsf.gov/news/news_summ.jsp?org=NSF&cntn_id=124263&preview=false
NSF LTER FCE News: Gulf Oil Spill: NSF Funds Research on Impacts to Florida Everglades: http://www.nsf.gov/news/news_summ.jsp?cntn_id=117430
NSF LTER FCE News: Where Does Charcoal, or Black Carbon, in Soils Go?: http://www.nsf.gov/news/news_summ.jsp?cntn_id=127577

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:
http://nsf.gov/news/news_images.jsp?cntn_id=130896&org=NSF

Further reports about: Carbon Coastal Environmental Biology NSF Ocean coral reefs freshwater rise salt marshes sea level sea level rise

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>