Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-Stressed Europa Likely Off-Kilter at One Time

19.09.2013
By analyzing the distinctive cracks lining the icy face of Europa, NASA scientists found evidence that this moon of Jupiter likely spun around a tilted axis at some point.

This tilt could influence calculations of how much of Europa's history is recorded in its frozen shell, how much heat is generated by tides in its ocean, and even how long the ocean has been liquid.


The distinctive cracks crisscrossing Europa's icy surface are clues to the stresses that this moon of Jupiter has experienced. This mosaic image was taken by NASA's Galileo satellite, which flew past this moon of Jupiter six times between 1996 and 1999. Image Credit: NASA/JPL-Caltech/University of Arizona

"One of the mysteries of Europa is why the orientations of the long, straight cracks called lineaments have changed over time. It turns out that a small tilt, or obliquity, in the spin axis, sometime in the past, can explain a lot of what we see," said Alyssa Rhoden, a postdoctoral fellow with Oak Ridge Associated Universities who is working at NASA's Goddard Space Flight Center in Greenbelt, Md. She is the lead author of a paper in the September–October issue of Icarus that describes the results.

Europa's network of crisscrossing cracks serves as a record of the stresses caused by massive tides in the moon's global ocean. These tides occur because Europa travels around Jupiter in a slightly oval-shaped orbit. When Europa comes closer to the planet, the moon gets stretched like a rubber band, with the ocean height at the long ends rising nearly 100 feet (30 meters). That's roughly as high as the 2004 tsunami in the Indian Ocean, but it happens on a body that measures only about one-quarter of Earth's diameter. When Europa moves farther from Jupiter, it relaxes back into the shape of a ball.

The moon's ice layer has to stretch and flex to accommodate these changes, but when the stresses become too great, it cracks. The puzzling part is why the cracks point in different directions over time, even though the same side of Europa always faces Jupiter.

A leading explanation has been that Europa's frozen outer shell might rotate slightly faster than the moon orbits Jupiter. If this out-of-sync rotation does occur, the same part of the ice shell would not always face Jupiter.

Rhoden and her Goddard co-author Terry Hurford put that idea to the test using images taken by NASA's Galileo spacecraft during its nearly eight-year mission, which began in 1995. "Galileo produced many paradigm shifts in our understanding of Europa, one of which was the phenomena of out of sync rotation," said Claudia Alexander of NASA's Jet Propulsion Laboratory in Pasadena, Calif., who was the project manager when the Galileo mission ended.

Rhoden and Hurford compared the pattern of cracks in a key area near Europa's equator to predictions based on three different explanations. The first set of predictions was based on the rotation of the ice shell. The second set assumed that Europa was spinning around a tilted axis, which, in turn, made the orientation of the pole change over time. This effect, called precession, looks very much like what happens when a spinning toy top has started to slow down and wobble. The third explanation was that the cracks were laid out in random directions.

The researchers got the best performance when they assumed that precession had occurred, caused by a tilt of about one degree, and combined this effect with some random cracks, said Rhoden. Out-of-sync rotation was surprisingly unsuccessful, in part because Rhoden found an oversight in the original calculations for this model.

The results are compelling enough to satisfy Richard Greenberg, the University of Arizona professor who had earlier proposed the idea of out-of sync rotation.

"By extracting new information from the Galileo data, this work refines and improves our understanding of the very unusual geology of Europa," said Greenberg, who was Rhoden's undergraduate advisor and Hurford's graduate advisor.

The existence of tilt would not rule out the out-of-sync rotation, according to both Rhoden and Greenberg. But it does suggest that Europa's cracks may be much more recent than previously thought. That's because the spin pole direction may change by as much as a few degrees per day, completing one precession period over several months. On the other hand, with the leading explanation, one full rotation of the ice sheet would take roughly 250,000 years. In either case, several rotations would be needed to explain the crack patterns.

A tilt also could affect the estimates of the age of Europa's ocean. Because tidal forces are thought to generate the heat that keeps Europa's ocean liquid, a tilt in the spin axis might suggest that more heat is generated by tidal forces. This, in turn, might keep the ocean liquid longer.

The analysis does not specify when the tilt would have occurred. So far, measurements have not been made of the tilt of Europa's axis, and this is one goal scientists have for Europa missions in the future.

"One of the fascinating open questions is how active Europa still is. If researchers pin down Europa's current spin axis, then our findings would allow us to assess whether the clues we are finding on the moon's surface are consistent with the present-day conditions," said Rhoden.

The Galileo mission was managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate.

For information about NASA and agency programs, visit:
http://www.nasa.gov/
Elizabeth Zubritsky / Nancy Neal-Jones
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-614-5438 / 301-286-0039
elizabeth.a.zubritsky@nasa.gov / nancy.n.jones@nasa.gov
Jia-Rui C. Cook
NASA's Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0850
jccook@jpl.nasa.gov

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/long-stressed-europa-likely-off-kilter-at-one-time/

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>