Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locations of strain, slip identified in major earthquake fault

17.02.2009
Deep-sea drilling into one of the most active earthquake zones on the planet is providing the first direct look at the geophysical fault properties underlying some of the world's largest earthquakes and tsunamis.

The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is the first geologic study of the underwater subduction zone faults that give rise to the massive earthquakes known to seismologists as mega-thrust earthquakes.

"The fundamental goal is to sample and monitor this major earthquake-generating zone in order to understand the basic mechanics of faulting, the basic physics and friction," says Harold Tobin, University of Wisconsin-Madison geologist and co-chief scientist of the project.

Tobin will present results from the first stage of the project Sunday, Feb. 15, at the 2009 American Association for the Advancement of Science meeting in Chicago.

Subduction zone faults extend miles below the seafloor and the active earthquake-producing regions — the seismogenic zones — are buried deep in the Earth's crust. The NanTroSEIZE project, an international collaboration overseen by the Integrated Ocean Drilling Program, is using cutting-edge deep-water drilling technology to reach these fault zones for the first time.

"If we want to understand the physics of how the faults really work, we have to go to those faults in the ocean," Tobin explains. "Scientific drilling is the main way we know anything at all about the geology of the two-thirds of the Earth that is submerged."

The decade-long project, to be completed in four stages, will use boreholes, rock samples, and long-term in situ monitoring of a fault in the Nankai Trough, an earthquake zone off the coast of Japan with a history of powerful temblors, to understand the basic fault properties that lead to earthquakes and tsunamis. The project is currently is its second year.

Subduction zone faults angle upward as one of the giant tectonic plates comprising Earth's surface slides below another. Tremendous friction between the plates builds until the system faults and the accumulated energy drives the upper plate forward, creating powerful seismic waves that make the crust shake and can produce a tsunami. But although both shallow and deep parts of the fault slip, only the deep regions produce earthquakes.

During the first stage of the project, the team found evidence of extensive rock deformation and a highly concentrated slip zone even in shallow regions that do not generate earthquakes. One rock core from a shallow part of the fault contains a narrow band of finely ground "rock flour" revealing a fault zone between the upper and lower plates that is only about two millimeters thick — roughly the thickness of a quarter.

Above deeper portions of the fault, the team discovered layers of displaced rock and evidence of prolonged seismic activity that suggest a region known as the megasplay fault is likely responsible for the largest tsunami-generating plate slips.

"A fundamental goal was to understand how the faults at depth connect up toward the Earth's surface, and we feel that we've discovered the fault zone that's the main culprit," Tobin says.

The next stage of drilling will commence this May, with plans to drill additional boreholes into the plate above deep regions of the fault zone. In addition to collecting cores for comparison to those from shallower parts of the fault, the scientists will install sensors in these holes to set up a deep-sea observatory monitoring physical stresses, movement, temperature and pressure.

Harold Tobin | EurekAlert!
Further information:
http://www.wisc.edu
http://www.jamstec.go.jp/chikyu/eng/Expedition/NantroSEIZE/index.html
http://www.news.wisc.edu/newsphotos/drilling.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>