Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LLNL scientist finds topography of Eastern Seaboard muddles ancient sea level changes

17.05.2013
The distortion of the ancient shoreline and flooding surface of the U.S. Atlantic Coastal Plain are the direct result of fluctuations in topography in the region and could have implications on understanding long-term climate change, according to a new study.

Sedimentary rocks from Virginia through Florida show marine flooding during the mid-Pliocene Epoch, which correlates to approximately 4 million years ago. Several wave-cut scarps (rock exposures), which originally would have been horizontal, are now draped over a warped surface with up to 60 meters variation.


The reconstructed shoreline of the eastern U.S. at 3 million years ago (colors represent topography in meters). The reconstruction is based on mantle flow and glacial isostatic adjustment over the past 3 million years. The predicted shoreline is in good agreement with geologic inferences which has implications on understanding the past long-term sea level change.

Nathan Simmons of Lawrence Livermore National Laboratory and colleagues from the University of Chicago, Universite du Quebec a Montreal, Syracuse University, Harvard University and the University of Texas at Austin modeled the active topography using mantle convection simulations that predict the amplitude and broad spatial distribution of this distortion. The results imply that dynamic topography and, to a lesser extent, glacial adjustment, account for the current architecture of the coastal plain and nearby shelf.

The results appear in the May 16 edition of Science Express, and will appear at a later date in Science Magazine.

"Our simulations of dynamic topography of the Eastern Seaboard have implications for inferences of global long-term sea-level change," Simmons said.

The eastern coast of the United States is considered an archetypal Atlantic-type or passive-type continental margin.

"The highlight is that mantle flow is a major component in distorting the Earth's surface over geologic time, even in so-called 'passive' continental margins," Simmons said. "Reconstructing long-term global sea-level change based on stratigraphic relations must account for this effect. In other words, did the water level change or did the ground move? This could have implications on understanding very long-term climate change."

The mantle is not a passive player in determining long-term sea level changes. Mantle flow influences surface topography, through perturbations of the dynamic topography, in a manner that varies both spatially and temporally. As a result, it is difficult to invert for the global long-term sea level signal and, in turn, the size of the Antarctic Ice Sheet, using east coast shoreline data.

Simmons said the new results provide another powerful piece of evidence that mantle flow is intimately involved in shaping the Earth's surface and must be considered when attempting to unravel numerous long-term Earth processes such as sea-level variations over millions of years.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov
http://www.llnl.gov/news/newsreleases/2013/May/NR-13-05-04.html

Further reports about: LLNL Seaboard Security Forum sea level sea-level change

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>