Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore develops the world's deepest ERT imaging system for CO2 sequestration

13.06.2013
Lawrence Livermore National Laboratory researchers have broken the record for tracking the movement and concentration of carbon dioxide in a geologic formation using the world's deepest Electrical Resistance Tomography (ERT) system.

The research provides insight into the effects of geological sequestration to mitigate the impact of greenhouse gases.


AN ERT electrode band, mounted on non-conductive casing, is prepared for installation. Electrodes are protected by non-conductive, epoxy-based centralizers.

The team led by LLNL's Charles Carrigan obtained time lapse electrical resistivity images during the injection of more than 1 million tons of carbon dioxide (CO2) more than 10,000 feet deep in an oil and gas field in Cranfield, Miss., which represents the deepest application of the imaging technique to date. The previous depth record of about 2,100 feet was held by the CO2SINK Project Consortium in Ketzin, Germany.

"The images provide information about both the movement of the injected CO2 within a complex geologic formation and the change with time of the distribution of CO2 in the porous sandstone reservoir," Carrigan said.

Deep geologic sequestration of CO2 is being evaluated internationally to mitigate the impact of greenhouse gases produced during oil- and coal-based energy generation and manufacturing. Natural gas producing fields are particularly appealing sites for sequestration activities because the same geologic barrier or cap rock permitting the subsurface regime to act as a long term natural gas reservoir also can serve to permanently contain the injected CO2.

ERT allowed Xianjin Yang, another member of the LLNL team, to make a movie of the expanding CO2 plume as it fills the sandstone region between the two electrode wells. To do this required analyzing months of data and using only the highest quality results to produce the images.

The team reports on the design, placement and imaging from the world's deepest ERT system in the June 1 online issue of the International Journal of Greenhouse Gas Control. The research also will appear in an upcoming print copy of the journal.

ERT can potentially track the movement and concentration of the injected CO2 as well as the degree of geologic containment using time-lapse electrical resistivity changes resulting from injecting the fluid into the reservoir formation.

Installing each ERT array in the sequestration reservoir required designing all cabling and electrodes, which were externally mounted on the borehole casing, to survive the trip more than 10,000 feet down a crooked borehole with walls made jagged by broken rocks.

The team then used the ERT array in a challenging environment of high temperature (260 degrees Fahrenheit), high pressure (5,000 psi) and high corrosive fluids to effectively detect CO2 breakthroughs and CO2 saturation changes with time.

"This is a near-real time remote monitoring tool for tracking CO2 migration with time lapse tomographic images of CO2 concentration," Carrigan said.

When converted to CO2 concentration, the images provided information about the movement of the injected CO2 within a complex geologic formation as well as how the storage of the CO2 changed with time.

Carrigan said that given concerns about injection-induced fracturing of the cap rock seal causing leakage of CO2 from the reservoir, higher-resolution ERT also may have an application as an "early-warning" system for the formation of fracture pathways in cap rock that could result in environmental damage to overlying or nearby water resources. Another potential application involves monitoring the boundary of a sequestration lease to ensure that CO2 does not migrate across the boundary to an adjacent parcel.

The ERT project is part the U.S. Department of Energy sponsored Southeast Regional Carbon Sequestration Partnership (SECARB) Cranfield project near Natchez, Miss., which has become the fifth ERT system worldwide and the first in the United States to inject more than a million tons of CO2 into the sub-surface.

The Cranfield study, which was led by Susan Hovorka of the Bureau of Economic Geology at the University of Texas, was funded by Department of Energy, National Energy Technology Laboratory under contract to the Southern States Energy Board.

More Information

"Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs," International Journal of Greenhouse Gas Control

"Going underground to monitor carbon dioxide," LLNL news release, June 2, 2010.

"Locked in rock: Sequestering carbon dioxide underground," Science & Technology Review, May 2005

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>