Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Livermore develops the world's deepest ERT imaging system for CO2 sequestration

13.06.2013
Lawrence Livermore National Laboratory researchers have broken the record for tracking the movement and concentration of carbon dioxide in a geologic formation using the world's deepest Electrical Resistance Tomography (ERT) system.

The research provides insight into the effects of geological sequestration to mitigate the impact of greenhouse gases.


AN ERT electrode band, mounted on non-conductive casing, is prepared for installation. Electrodes are protected by non-conductive, epoxy-based centralizers.

The team led by LLNL's Charles Carrigan obtained time lapse electrical resistivity images during the injection of more than 1 million tons of carbon dioxide (CO2) more than 10,000 feet deep in an oil and gas field in Cranfield, Miss., which represents the deepest application of the imaging technique to date. The previous depth record of about 2,100 feet was held by the CO2SINK Project Consortium in Ketzin, Germany.

"The images provide information about both the movement of the injected CO2 within a complex geologic formation and the change with time of the distribution of CO2 in the porous sandstone reservoir," Carrigan said.

Deep geologic sequestration of CO2 is being evaluated internationally to mitigate the impact of greenhouse gases produced during oil- and coal-based energy generation and manufacturing. Natural gas producing fields are particularly appealing sites for sequestration activities because the same geologic barrier or cap rock permitting the subsurface regime to act as a long term natural gas reservoir also can serve to permanently contain the injected CO2.

ERT allowed Xianjin Yang, another member of the LLNL team, to make a movie of the expanding CO2 plume as it fills the sandstone region between the two electrode wells. To do this required analyzing months of data and using only the highest quality results to produce the images.

The team reports on the design, placement and imaging from the world's deepest ERT system in the June 1 online issue of the International Journal of Greenhouse Gas Control. The research also will appear in an upcoming print copy of the journal.

ERT can potentially track the movement and concentration of the injected CO2 as well as the degree of geologic containment using time-lapse electrical resistivity changes resulting from injecting the fluid into the reservoir formation.

Installing each ERT array in the sequestration reservoir required designing all cabling and electrodes, which were externally mounted on the borehole casing, to survive the trip more than 10,000 feet down a crooked borehole with walls made jagged by broken rocks.

The team then used the ERT array in a challenging environment of high temperature (260 degrees Fahrenheit), high pressure (5,000 psi) and high corrosive fluids to effectively detect CO2 breakthroughs and CO2 saturation changes with time.

"This is a near-real time remote monitoring tool for tracking CO2 migration with time lapse tomographic images of CO2 concentration," Carrigan said.

When converted to CO2 concentration, the images provided information about the movement of the injected CO2 within a complex geologic formation as well as how the storage of the CO2 changed with time.

Carrigan said that given concerns about injection-induced fracturing of the cap rock seal causing leakage of CO2 from the reservoir, higher-resolution ERT also may have an application as an "early-warning" system for the formation of fracture pathways in cap rock that could result in environmental damage to overlying or nearby water resources. Another potential application involves monitoring the boundary of a sequestration lease to ensure that CO2 does not migrate across the boundary to an adjacent parcel.

The ERT project is part the U.S. Department of Energy sponsored Southeast Regional Carbon Sequestration Partnership (SECARB) Cranfield project near Natchez, Miss., which has become the fifth ERT system worldwide and the first in the United States to inject more than a million tons of CO2 into the sub-surface.

The Cranfield study, which was led by Susan Hovorka of the Bureau of Economic Geology at the University of Texas, was funded by Department of Energy, National Energy Technology Laboratory under contract to the Southern States Energy Board.

More Information

"Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs," International Journal of Greenhouse Gas Control

"Going underground to monitor carbon dioxide," LLNL news release, June 2, 2010.

"Locked in rock: Sequestering carbon dioxide underground," Science & Technology Review, May 2005

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>