Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Livermore develops the world's deepest ERT imaging system for CO2 sequestration

Lawrence Livermore National Laboratory researchers have broken the record for tracking the movement and concentration of carbon dioxide in a geologic formation using the world's deepest Electrical Resistance Tomography (ERT) system.

The research provides insight into the effects of geological sequestration to mitigate the impact of greenhouse gases.

AN ERT electrode band, mounted on non-conductive casing, is prepared for installation. Electrodes are protected by non-conductive, epoxy-based centralizers.

The team led by LLNL's Charles Carrigan obtained time lapse electrical resistivity images during the injection of more than 1 million tons of carbon dioxide (CO2) more than 10,000 feet deep in an oil and gas field in Cranfield, Miss., which represents the deepest application of the imaging technique to date. The previous depth record of about 2,100 feet was held by the CO2SINK Project Consortium in Ketzin, Germany.

"The images provide information about both the movement of the injected CO2 within a complex geologic formation and the change with time of the distribution of CO2 in the porous sandstone reservoir," Carrigan said.

Deep geologic sequestration of CO2 is being evaluated internationally to mitigate the impact of greenhouse gases produced during oil- and coal-based energy generation and manufacturing. Natural gas producing fields are particularly appealing sites for sequestration activities because the same geologic barrier or cap rock permitting the subsurface regime to act as a long term natural gas reservoir also can serve to permanently contain the injected CO2.

ERT allowed Xianjin Yang, another member of the LLNL team, to make a movie of the expanding CO2 plume as it fills the sandstone region between the two electrode wells. To do this required analyzing months of data and using only the highest quality results to produce the images.

The team reports on the design, placement and imaging from the world's deepest ERT system in the June 1 online issue of the International Journal of Greenhouse Gas Control. The research also will appear in an upcoming print copy of the journal.

ERT can potentially track the movement and concentration of the injected CO2 as well as the degree of geologic containment using time-lapse electrical resistivity changes resulting from injecting the fluid into the reservoir formation.

Installing each ERT array in the sequestration reservoir required designing all cabling and electrodes, which were externally mounted on the borehole casing, to survive the trip more than 10,000 feet down a crooked borehole with walls made jagged by broken rocks.

The team then used the ERT array in a challenging environment of high temperature (260 degrees Fahrenheit), high pressure (5,000 psi) and high corrosive fluids to effectively detect CO2 breakthroughs and CO2 saturation changes with time.

"This is a near-real time remote monitoring tool for tracking CO2 migration with time lapse tomographic images of CO2 concentration," Carrigan said.

When converted to CO2 concentration, the images provided information about the movement of the injected CO2 within a complex geologic formation as well as how the storage of the CO2 changed with time.

Carrigan said that given concerns about injection-induced fracturing of the cap rock seal causing leakage of CO2 from the reservoir, higher-resolution ERT also may have an application as an "early-warning" system for the formation of fracture pathways in cap rock that could result in environmental damage to overlying or nearby water resources. Another potential application involves monitoring the boundary of a sequestration lease to ensure that CO2 does not migrate across the boundary to an adjacent parcel.

The ERT project is part the U.S. Department of Energy sponsored Southeast Regional Carbon Sequestration Partnership (SECARB) Cranfield project near Natchez, Miss., which has become the fifth ERT system worldwide and the first in the United States to inject more than a million tons of CO2 into the sub-surface.

The Cranfield study, which was led by Susan Hovorka of the Bureau of Economic Geology at the University of Texas, was funded by Department of Energy, National Energy Technology Laboratory under contract to the Southern States Energy Board.

More Information

"Electrical resistance tomographic monitoring of CO2 movement in deep geologic reservoirs," International Journal of Greenhouse Gas Control

"Going underground to monitor carbon dioxide," LLNL news release, June 2, 2010.

"Locked in rock: Sequestering carbon dioxide underground," Science & Technology Review, May 2005

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>