Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking space observations to ecosystem functions

20.05.2015

Satellite observations play an increasingly important role in monitoring changes of terrestrial ecosystems at multiple spatial and temporal scales. The new EU funded project “BACI” translates satellite data streams into novel “essential biodiversity variables” by integrating ground-based observations. The trans-disciplinary project will offer new insights into the functioning and state of ecosystems and biodiversity. BACI enables the user community to detect abrupt and transient changes of ecosystems and quantify the implications for regional biodiversity.

Other key elements are, firstly attributing ecosystem transformations to societal transformations, and secondly developing a prototype early warning system for detecting disturbances at the interface of land ecosystems and atmosphere.


Focus areas in Europe and Africa

BACI


Project Logo

BACI

The continuous transformation of ecosystems, induced by land use change or resulting from climate change may put at risk the maintenance of regional ecosystem functioning and biodiversity. As promoted by GEO-BON (“The Group On Earth Observations Biodiversity Observation Network”, http://geobon.org/) scientists, land managers, NGOs and policy makers amongst others would benefit tremendously from an easy-to-access system for detecting these changes at an early stage in order to develop mitigation and management strategies.

The new EU-funded BACI project “Detecting changes in essential ecosystem and biodiversity properties – towards a Biosphere Atmosphere Change Index” takes up this challenge and exploits current and future European space data archives, including optical and radar data, to this end.

One component of the international consortium is integration of space and ground data to unravel new and fundamental relationships between space observations and ecosystem status. Modern machine-learning tools will be key to this effort allowing for an effective exploitation of European data and deriving new essential ecosystem variables – in particular, novel “Essential Biodiversity Variables”.

These variables will in turn enable users to more easily interpret observed ecosystem and biodiversity changes. A second component of BACI consists of building a system that auto-matically detects critical transitions in ecosystems and attributes these to transitions in the societal system. One of the goals is identifying hotspots of change within selected key regions in Europe and Africa, all of which are undergoing different societal-ecological transformations that might itself be attributable to environmental change.

The European Horizon 2020 research and innovation programme funds the BACI project which brings together ten leading research and data processing institutions with the intention of contrib-uting to international efforts to advance the monitoring of key properties required to an improved understanding of biodiversity patterns and transformations, as well as to ecosystem functional properties.

The consortium includes the Max Plank Institute for Biogeochemistry (Germany, coordinator), University degli studi della Tuscia (Italy), Eidgenoessische Forschungsanstalt (Switzerland), Friedrich-Schiller-Universität Jena (Germany), Wageningen University (Netherlands), University College London (United Kingdom), Universität Klagenfurt (Austria), Aarhus Universitet (Denmark), Rezatec (United Kingdom) and Science and Technology Facilities Council (United Kingdom).

From May 19 to May 21, 2015 the ten European partners will come together to officially kick off their new project. Besides organizing and hosting the meeting in Jena, the Max Plank Institute for Biogeochemistry is responsible for coordinating, managing, and disseminating the outcome of the project. Within the next four years the scientists will join forces to deliver the first version of an early warning system for ecosystem changes.

Contact:
Dr. Miguel Mahecha
Dpt. Biogeochemical Integration
MPI for Biogeochemistry
07745 Jena, Germany
Ph: 03641-576265
Email: mmahecha@bgc-jena.mpg.de

Weitere Informationen:

http://www.baci-h2020.eu project webpage

Susanne Héjja | Max-Planck-Institut für Biogeochemie

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>