Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking crystal growth to volcano seismicity

25.05.2012
Autopsy of an eruption
Researchers from RUB and Bristol report in Science
How processes below a volcano are linked to seismic signals at the surface is described by scientists from the petrology group of the Ruhr-Universität Bochum and their colleagues from Bristol in a paper published today in Science. They analyzed the growth of crystals in the magma chamber and used results obtained from the monitoring of seismic signals. The research could ultimately help to predict future volcanic eruptions with greater accuracy.

Like tree rings: Crystals in a magma chamber

A few kilometers below the volcano a liquid reservoir exists, the magma chamber, which feeds volcanic eruptions. Zoned crystals grow concentrically like tree rings within the magma body and contain critical information. Individual zones have subtly different chemical compositions, reflecting the changes in physical conditions (for example the temperature) within the magma chamber and thus give an indication of volcanic processes and the timescales over which they occur. During a volcanic eruption, crystals are thrown to the surface in conjunction with the liquid parts of the magma, which quickly petrifies and thus can be sampled.

Mount St. Helens

The researchers analyzed the chemical composition of crystals from Mount St. Helens and linked these data to seismic observations of the deadly 1980 Mount St. Helens eruption. The peaks in crystal growth were found to correlate with increased seismicity and gas emissions in the months prior to the eruption. An increase in crystal growth is also evidence of pulses of magma entering a growing chamber within the volcano, which finally triggers the eruption. In this way, the researchers confirmed what has long been anticipated: a clear evidence of the correlation between crystal growth (fresh magma input) and volcanic seismicity.

Time scales: An expertise of Bochum

The extraction of time scales of different kinds of processes from zoned crystals is an expertise of the petrology group at the Institute for Geology, Mineralogy, and Geophysics in Bochum. A similar study on eruptions from another active volcano, Mt. Etna in Italy, was carried out by Bochum scientists in collaboration with scientists from Singapore and Pisa (published in Earth and Planetary Science Letters, 2011). For these kinds of studies the researchers use information on how fast certain elements move through minerals (diffusion). The determination of diffusion rates in minerals is another research focus of the petrologists in Bochum.

A relevant study for millions of people

Over 500 million people live close to volcanoes which may erupt with little or no clear warning, causing widespread devastation, disruption to aviation and even global effects on climate. Many of the world’s volcanoes are monitored for changes such as increases in seismicity or ground deformation. However, an on-going problem for volcanologists is linking observations at the surface to processes occurring underground. This forensic approach applied by the English-German team can be also applied to other active volcanoes to shed new light upon the nature and timescale of pre-eruptive activity. This will help scientists to evaluate monitoring signals at restless volcanoes and enable better forecasting of future eruptions.

Bibliographic record

K. Saunders, J. Blundy, R. Dohmen, K. Cashman (2012): Linking petrology and seismology at an active volcano, Science, doi: 10.1126/science.1220066

Further Information

Dr. Kate Saunders, Department of Earth Sciences, University of Bristol, UK, Tel. +44/117/9545428
Kate.Saunders@bristol.ac.uk

Dr. Ralf Dohmen, Petrology, Institute Geology, Mineralogy, and Geophysics of the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24394
Ralf.Dohmen@rub.de

Click for more

Petrology at RUB
http://www.gmg.ruhr-uni-bochum.de/petrologie/index.html.en

University of Bristol
http://www.bristol.ac.uk/earthsciences/

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>