Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Limiting greenhouse gas emissions from land use in Europe

10.04.2013
Not only do humans emit greenhouse gases into the atmosphere, but they also do things that help remove these gases from the atmosphere — for example, planting more forests or other land management techniques can lead to greater uptake of greenhouse gases from the atmosphere.

New research presented by IIASA researcher Hannes Böttcher at the EGU General Assembly this week estimates future land use emissions for the European Union. These scenarios provide the basis for policy discussions in the EU, and also help identify the least costly mitigation options for addressing climate change in Europe.

The new estimates, which are based on an integrated modeling framework that combines information about population, economics, and land use and land productivity, show that Europe could potentially reduce greenhouse gas emissions from land use by more than 60% by 2050. The study showed that the biggest mitigation potential lies in cutting emissions from agriculture such as livestock production, as well as in managing forests effectively to increase their role as a carbon sink.

While the study specifically addresses European emissions, the researchers also looked at how mitigation efforts in Europe would affect land use and emissions outside of Europe. For example, if Europe reduces cropland in order to grow more forests, the food that is no longer grown will likely instead be grown somewhere outside of Europe. Mitigation measures in the land use sector are therefore likely to change also the productivity of the sector in Europe.

"If we assume that demand doesn't change," says Böttcher, "to satisfy demand, the production will move outside of Europe to a large degree." This movement is known as a leakage effect. The researchers calculated that this leakage effect would reduce the effectiveness of European mitigation efforts by up to 20%.

Katherine Leitzell | EurekAlert!
Further information:
http://www.iiasa.ac.at

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>