Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning, with a chance of antimatter

24.11.2017

Japanese netizens help scan lightning for gamma rays

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash! -- lightning has struck.


A Kyoto University-based team has unraveled the mystery of gamma-ray emission cascades caused by lightning strikes.

Credit: Kyoto University/Teruaki Enoto

This scene, while familiar to anyone and repeated constantly across the planet, is not without a feeling of mystery. But now that mystery has deepened, with the discovery that lightning can result in matter-antimatter annihilation.

In a collaborative study appearing in Nature, researchers from Japan describe how gamma rays from lightning react with the air to produce radioisotopes and even positrons -- the antimatter equivalent of electrons.

"We already knew that thunderclouds and lightning emit gamma rays, and hypothesized that they would react in some way with the nuclei of environmental elements in the atmosphere," explains Teruaki Enoto from Kyoto University, who leads the project.

"In winter, Japan's western coastal area is ideal for observing powerful lightning and thunderstorms. So, in 2015 we started building a series of small gamma-ray detectors, and placed them in various locations along the coast."

But then the team ran into funding problems. To continue their work, and in part to reach out to a wide audience of potentially interested members of the public as quickly as possible, they turned to the internet.

"We set up a crowdfunding campaign through the 'academist' site," continues Enoto, "in which we explained our scientific method and aims for the project. Thanks to everybody's support, we were able to make far more than our original funding goal."

Spurred by their success, the team built more detectors and installed them across the northwest coast of Honshu. And then in February 2017, four detectors installed in Kashiwazaki city, Niigata recorded a large gamma-ray spike immediately after a lightning strike a few hundred meters away.

It was the moment the team realized they were seeing a new, hidden face of lightning.

When they analyzed the data, the scientists found three distinct gamma-ray bursts. The first was less than one millisecond in duration; the second was a gamma-ray afterglow that decayed over several dozens of milliseconds; and finally there was a prolonged emission lasting about one minute.

Enoto explains, "We could tell that the first burst was from the lightning strike. Through our analysis and calculations, we eventually determined the origins of the second and third emissions as well."

The second afterglow, for example, was caused by lightning reacting with nitrogen in the atmosphere. The gamma rays emitted in lightning have enough energy to knock a neutron out of atmospheric nitrogen, and it was the reabsorption of this neutron by particles in the atmosphere that produced the gamma-ray afterglow.

The final, prolonged emission was from the breakdown of now neutron-poor and unstable nitrogen atoms. These released positrons, which subsequently collided with electrons in annihilation events releasing gamma rays.

"We have this idea that antimatter is something that only exists in science fiction. Who knew that it could be passing right above our heads on a stormy day?" says Enoto.

"And we know all this thanks to our supporters who joined us through 'academist'. We are truly grateful to all."

The team still maintains over ten detectors on the coast of Japan, and are continually collecting data. They look forward to new discoveries that may await them, and Enoto hopes to continue seeing the participation of ordinary citizens in research, expanding the bounds of scientific discovery.

###

The paper "Photonuclear reactions triggered by lightning discharge" appeared 23 November 2017 in Nature, with doi: 10.1038/nature24630

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
comms@mail2.adm.kyoto-u.ac.jp
81-757-535-728

 @KyotoU_News

http://www.kyoto-u.ac.jp/en 

Raymond Kunikane Terhune | EurekAlert!

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>