Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning, with a chance of antimatter

24.11.2017

Japanese netizens help scan lightning for gamma rays

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash! -- lightning has struck.


A Kyoto University-based team has unraveled the mystery of gamma-ray emission cascades caused by lightning strikes.

Credit: Kyoto University/Teruaki Enoto

This scene, while familiar to anyone and repeated constantly across the planet, is not without a feeling of mystery. But now that mystery has deepened, with the discovery that lightning can result in matter-antimatter annihilation.

In a collaborative study appearing in Nature, researchers from Japan describe how gamma rays from lightning react with the air to produce radioisotopes and even positrons -- the antimatter equivalent of electrons.

"We already knew that thunderclouds and lightning emit gamma rays, and hypothesized that they would react in some way with the nuclei of environmental elements in the atmosphere," explains Teruaki Enoto from Kyoto University, who leads the project.

"In winter, Japan's western coastal area is ideal for observing powerful lightning and thunderstorms. So, in 2015 we started building a series of small gamma-ray detectors, and placed them in various locations along the coast."

But then the team ran into funding problems. To continue their work, and in part to reach out to a wide audience of potentially interested members of the public as quickly as possible, they turned to the internet.

"We set up a crowdfunding campaign through the 'academist' site," continues Enoto, "in which we explained our scientific method and aims for the project. Thanks to everybody's support, we were able to make far more than our original funding goal."

Spurred by their success, the team built more detectors and installed them across the northwest coast of Honshu. And then in February 2017, four detectors installed in Kashiwazaki city, Niigata recorded a large gamma-ray spike immediately after a lightning strike a few hundred meters away.

It was the moment the team realized they were seeing a new, hidden face of lightning.

When they analyzed the data, the scientists found three distinct gamma-ray bursts. The first was less than one millisecond in duration; the second was a gamma-ray afterglow that decayed over several dozens of milliseconds; and finally there was a prolonged emission lasting about one minute.

Enoto explains, "We could tell that the first burst was from the lightning strike. Through our analysis and calculations, we eventually determined the origins of the second and third emissions as well."

The second afterglow, for example, was caused by lightning reacting with nitrogen in the atmosphere. The gamma rays emitted in lightning have enough energy to knock a neutron out of atmospheric nitrogen, and it was the reabsorption of this neutron by particles in the atmosphere that produced the gamma-ray afterglow.

The final, prolonged emission was from the breakdown of now neutron-poor and unstable nitrogen atoms. These released positrons, which subsequently collided with electrons in annihilation events releasing gamma rays.

"We have this idea that antimatter is something that only exists in science fiction. Who knew that it could be passing right above our heads on a stormy day?" says Enoto.

"And we know all this thanks to our supporters who joined us through 'academist'. We are truly grateful to all."

The team still maintains over ten detectors on the coast of Japan, and are continually collecting data. They look forward to new discoveries that may await them, and Enoto hopes to continue seeing the participation of ordinary citizens in research, expanding the bounds of scientific discovery.

###

The paper "Photonuclear reactions triggered by lightning discharge" appeared 23 November 2017 in Nature, with doi: 10.1038/nature24630

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
comms@mail2.adm.kyoto-u.ac.jp
81-757-535-728

 @KyotoU_News

http://www.kyoto-u.ac.jp/en 

Raymond Kunikane Terhune | EurekAlert!

More articles from Earth Sciences:

nachricht A huge hydrogen generator at the Earth's core-mantle boundary
24.11.2017 | Science China Press

nachricht Scientists find why CP El Niño is harder to predict than EP El Niño
24.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>