Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning-produced radiation a potential health concern for air travelers

09.12.2009
Scientists say incidents are likely rare and more research is needed

New information about lightning-emitted X-rays, gamma rays and high-energy electrons during thunderstorms is prompting scientists to raise concerns about the potential for airline passengers and crews to be exposed to harmful levels of radiation.

Scientists at the Florida Institute of Technology, University of California, Santa Cruz and the University of Florida have estimated that airplane passengers could be exposed to a radiation dose equal to that from 400 chest X-rays if their airplane happens to be near the start of a lightning discharge or related phenomena known as a terrestrial gamma ray flash.

The big unknown: how often — if ever — commercial airliners are exposed to these thunderstorm events, because the bursts of radiation occur only over extremely brief periods and extend just a few hundred feet in the clouds.

“We know that commercial airplanes are typically struck by lightning once or twice a year,” said Joe Dwyer, professor of physics and space sciences at Florida Tech. “What we don’t know is how often planes happen to be in just the right place or right time to receive a high radiation dose. We believe it is very rare, but more research is needed to answer the question definitively.”

Dwyer is the lead author of a paper about the research set to appear in the Journal for Geophysical Research — Atmospheres. Seven researchers from Florida Tech, UC Santa Cruz and UF contributed to the paper. “Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft.” It is free and downloadable online from the journal’s “papers in press” page. The link is http://www.agu.org/journals/pip/jd/2009JD012039-pip.pdf.

The authors did not measure high radiation doses directly with airplanes. Instead, they estimated radiation based on satellite and ground-based observations of X-rays and gamma rays.

The authors “combined observations of lightning-produced X-rays and gamma rays with computer models of the movement of high-energy particles to estimate the amount of radiation that could be produced within, or very near, thunderclouds during lightning storms,” said Hamid Rassoul, a co-author and senior researcher from Florida Tech.

The observations included those made from orbiting satellites of “terrestrial gamma-ray flashes,” or TGFs, mysterious phenomena that appear to originate within thunderstorms at the same altitudes used by jet airliners. They also included measurements of X-rays and gamma rays from natural lightning on the ground, as well as artificial lightning triggered with wire-trailing rockets fired into storm clouds. Researchers believe the phenomena are linked, because both produce high levels of gamma rays and X-rays and occur along with the actual lightning flash.

The scientists concluded the radiation in a football field-sized space around these lightning events could reach “biologically significant levels,” up to 10 rem, according to their paper.

“If an aircraft happened to be in or near the high-field region when either a lightning discharge or a TGF event is occurring, then the radiation dose received by passengers and crew members inside the aircraft could potentially approach 10 rem in less than one millisecond,” the paper says.

Ten rem is considered the maximum safe radiation exposure over a person’s lifetime. It is equal to 400 chest X-rays, three CAT scans or 7,500 hours of flight time in normal conditions. All airplane passengers are exposed to slightly elevated radiation levels due to cosmic rays.

While the research raises obvious concerns, the scientists stressed that they don’t know how often the high-radiation events occur — or how often planes are nearby enough to expose passengers and flight crews to potential danger.

David Smith, an associate professor of physics at UC-Santa Cruz, said recent airborne research suggests the incidents are rare. Flying aboard a National Science Foundation/National Center for Atmospheric Research aircraft this past summer in Florida, Smith and several of the other researchers used a highly sophisticated instrument to measure gamma ray flashes from thunderstorms. Over the course of several flights, they were only able to detect one such flash, at a safe distance from the plane.

“These observations show that although thunderstorms do occasionally create intense gamma-ray flashes, the chance of accidently being directly hit by one is small,” Smith said.

Martin Uman, another author and a distinguished professor of electrical and computer engineering at UF, noted that airline pilots typically seek to avoid flying through storms.

However, he said, the fact that commercial planes are struck once or twice a year suggests more inquiry is needed. He said he would recommend to the Federal Aviation Administration that it place detectors aboard planes capable of measuring the storm-related, brief and intense radiation bursts to determine how often they occur. He also said more research on the phenomena that generates the bursts is clearly needed.

“What we need to do is supply the right kind of detectors to a lot of planes, and see if this ever happens,” he said. “We also need to spend more time looking at gamma and x-ray radiation from lightning and thunderstorms and trying to understand how it works.”

The paper drew on data from numerous observations and experiments, including experiments involving artificial “triggered” lightning at UF/Florida Tech International Center for Lightning Research and Testing at the Camp Blanding Army National Guard Base near Starke, Florida. UF and Florida Tech researchers at the center were the first to identify X-ray emissions from triggered lightning.

Credits
Writer Aaron Hoover, ahoover@ufl.edu, 352-392-0186
Source Martin Uman, uman@ece.ufl.edu, 352-392-4038
Source Joe Dwyer, jdwyer@fit.edu, 321-674-7208

Martin Uman | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>