Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifecycles of tropical cyclones predicted in global computer model

23.12.2008
The initial results of the first computer model that simulates the global atmosphere with a detailed representation of individual clouds have been analyzed by a team of scientists at the International Pacific Research Center (IPRC) at the University of Hawai`i at Mânoa, Japan-Agency for Marine Earth Science and Technology (JAMSTEC), and the University of Tokyo.

The model, called the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), was developed for the supercomputer Earth Simulator at JAMSTEC. Given the atmospheric conditions that were present 1-2 weeks before the observed cyclones formed, the model successfully reproduced the birth of two real tropical cyclones that formed in the Indian Ocean in December 2006 and January 2007.

The model captured the timing and location of the formation of the observed cyclones as well as their paths and overall evolution. "We attribute the successful simulation to the realistic representation of both the large-scale circulation and the embedded convective vortices and their merging," says Hironori Fudeyasu, lead author of the study and IPRC postdoctoral fellow.

Atmospheric computer models with sufficient detail to represent clouds have greatly added to an understanding of local and regional climate, but huge computational needs in the past have allowed these models to be run only for small areas.

"The high temporal and spatial resolution datasets provided by NICAM in this and future simulations will allow detailed studies of tropical cyclone genesis and evolution, as well as other weather and climate-related phenomena," says co-author Yuqing Wang, UH meteorology professor and IPRC research team leader. He believes the results will usher in a new era in weather and climate prediction.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.agu.org/journals/scripts/highlight.php?pid=2008GL036003

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>