Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lifecycles of tropical cyclones predicted in global computer model

23.12.2008
The initial results of the first computer model that simulates the global atmosphere with a detailed representation of individual clouds have been analyzed by a team of scientists at the International Pacific Research Center (IPRC) at the University of Hawai`i at Mânoa, Japan-Agency for Marine Earth Science and Technology (JAMSTEC), and the University of Tokyo.

The model, called the Nonhydrostatic ICosahedral Atmospheric Model (NICAM), was developed for the supercomputer Earth Simulator at JAMSTEC. Given the atmospheric conditions that were present 1-2 weeks before the observed cyclones formed, the model successfully reproduced the birth of two real tropical cyclones that formed in the Indian Ocean in December 2006 and January 2007.

The model captured the timing and location of the formation of the observed cyclones as well as their paths and overall evolution. "We attribute the successful simulation to the realistic representation of both the large-scale circulation and the embedded convective vortices and their merging," says Hironori Fudeyasu, lead author of the study and IPRC postdoctoral fellow.

Atmospheric computer models with sufficient detail to represent clouds have greatly added to an understanding of local and regional climate, but huge computational needs in the past have allowed these models to be run only for small areas.

"The high temporal and spatial resolution datasets provided by NICAM in this and future simulations will allow detailed studies of tropical cyclone genesis and evolution, as well as other weather and climate-related phenomena," says co-author Yuqing Wang, UH meteorology professor and IPRC research team leader. He believes the results will usher in a new era in weather and climate prediction.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu
http://www.agu.org/journals/scripts/highlight.php?pid=2008GL036003

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>