Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlikely life thriving at Antarctica's Blood Falls

21.04.2009
An unmapped reservoir of briny liquid chemically similar to sea water, but hidden under an inland Antarctic glacier, appears to support microbial life in a cold, dark, oxygen-poor environment – a most unexpected setting to be teeming with life.

The McMurdo Dry Valleys of Antarctica are devoid of animals and complex plants and scientists consider them to be one of the Earth's most extreme deserts. The Valleys receive, on average, only 10 cm (3.93 inches) of snow each year.

Despite the lack of precipitation, during the Antarctic summer, temperatures rise just enough for glaciers protruding into the valleys to begin melting. The meltwater forms streams that enter lakes covered by ice that is two-to-three-stories thick.

Even less forgiving are the conditions found below the Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet in the otherwise ice-free Dry Valleys. The lack of light beneath the glacier makes the process of photosynthesis improbable, causing researchers to wonder how organisms found below the glacier could survive.

The research, which appears in the April 17 issue of Science, suggests that over the past 1.5 million years the microbes adapted to manipulate sulfur and iron compounds to survive. In place of photosynthesis, the microbes converted Fe(III) to Fe(II) to create food and energy.

The study was led by Jill Mikucki, a National Science Foundation-funded researcher at Dartmouth College. Mikucki and a team of researchers based their analysis on samples taken at the ominously, but aptly named Blood Falls, a water-fall-like feature at the edge of the glacier that flows irregularly, but often has a strikingly bright red appearance in stark contrast to the icy background.

The key piece of data supporting the hypothesis that the microbes were in fact surviving by turning Fe(III) to Fe(II) came from samples analyzed by Ariel Anbar, one of the authors of the study and an associate professor at Arizona State University, and researchers in his group, using instruments in the W. M. Keck Laboratory for Environmental Biogeochemistry at ASU.

"We found that the isotopes of Fe(II) in the brines are shifted in a way that is consistent with this microbial process," said Anbar, who holds joint appointments in the School of Earth and Space Exploration and the Department of Chemistry and Biochemistry in the College of Liberal Arts and Sciences.

Even the earliest explorers noted the massive red stain at the snout of the glacier and speculated as to what may have caused it. Some guessed that red alga was responsible for the bright color. "In fact, the red color is a result of all that Fe(II) produced by bacteria," said Anbar. "When the Fe(II)-rich water reaches the surface, the Fe(II) reacts with oxygen in the air to make Fe(III) compounds that are sort of like rust. That's the source of the red color."

The microbes are remarkably similar in nature to species found in marine environments, leading to the conclusion that the populations under the glacier are the remnants of a larger population of microbes that once occupied a fjord or sea that received sunlight. Many of these marine lineages likely declined, while others adapted to the changing conditions when the Taylor Glacier advanced, sealing off the system under a thick ice cap.

In the paper, however, Mikucki and her colleagues argue that the creatures that survive under the Taylor Glacier are both far more exotic and far more adaptable than the early explorers thought.

Because the outflow from the glacier follows no clear pattern, it took a number of years to obtain the samples needed to conduct an analysis. Finally Mikucki obtained a sample of an extremely salty and clear liquid for analysis.

"When I started running the chemical analysis on it, there was no oxygen," she said. "That was when this got really interesting; it was a real 'eureka' moment."

Further genetic analysis suggests that of the relatively small numbers of microorganisms found in the brine, "the majority of these organisms are from marine lineages," she said.

In other words, microorganisms more similar to those found in an ocean than on land, but capable of surviving without the food and light sources available in the open ocean.

"The salts associated with these features are marine salts, and given the history of marine water in the dry valleys, it made sense that subglacial microbial communities might retain some of their marine heritage," she added.

This led to the conclusion that the ancestors of the microbes beneath the Taylor Glacier probably lived in the ocean many millions of years ago. When the floor of the Valleys arose more than 1.5 million years ago, a pool of seawater from the fjord that penetrated the area was trapped. The pool was eventually capped by the flow of the glacier.

The briny pond, whatever its size "is a unique sort of time capsule from a period in Earth's history," Mikucki said. "I don't know of another environment quite like this on Earth."

Life below the Taylor Glacier may help scientist address questions about life on "Snowball Earth", the period of geological time when large ice sheets covered the Earth's surface. But it's also a rich laboratory for studying life in other hostile environments, including the subglacial lakes of Antarctica and perhaps even on other icy planets in the solar system such as below the Martian ice caps or in the ice-covered oceans of Jupiter's moon Europa.

Nikki Staab | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>