Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlikely life thriving at Antarctica's Blood Falls

21.04.2009
An unmapped reservoir of briny liquid chemically similar to sea water, but hidden under an inland Antarctic glacier, appears to support microbial life in a cold, dark, oxygen-poor environment – a most unexpected setting to be teeming with life.

The McMurdo Dry Valleys of Antarctica are devoid of animals and complex plants and scientists consider them to be one of the Earth's most extreme deserts. The Valleys receive, on average, only 10 cm (3.93 inches) of snow each year.

Despite the lack of precipitation, during the Antarctic summer, temperatures rise just enough for glaciers protruding into the valleys to begin melting. The meltwater forms streams that enter lakes covered by ice that is two-to-three-stories thick.

Even less forgiving are the conditions found below the Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet in the otherwise ice-free Dry Valleys. The lack of light beneath the glacier makes the process of photosynthesis improbable, causing researchers to wonder how organisms found below the glacier could survive.

The research, which appears in the April 17 issue of Science, suggests that over the past 1.5 million years the microbes adapted to manipulate sulfur and iron compounds to survive. In place of photosynthesis, the microbes converted Fe(III) to Fe(II) to create food and energy.

The study was led by Jill Mikucki, a National Science Foundation-funded researcher at Dartmouth College. Mikucki and a team of researchers based their analysis on samples taken at the ominously, but aptly named Blood Falls, a water-fall-like feature at the edge of the glacier that flows irregularly, but often has a strikingly bright red appearance in stark contrast to the icy background.

The key piece of data supporting the hypothesis that the microbes were in fact surviving by turning Fe(III) to Fe(II) came from samples analyzed by Ariel Anbar, one of the authors of the study and an associate professor at Arizona State University, and researchers in his group, using instruments in the W. M. Keck Laboratory for Environmental Biogeochemistry at ASU.

"We found that the isotopes of Fe(II) in the brines are shifted in a way that is consistent with this microbial process," said Anbar, who holds joint appointments in the School of Earth and Space Exploration and the Department of Chemistry and Biochemistry in the College of Liberal Arts and Sciences.

Even the earliest explorers noted the massive red stain at the snout of the glacier and speculated as to what may have caused it. Some guessed that red alga was responsible for the bright color. "In fact, the red color is a result of all that Fe(II) produced by bacteria," said Anbar. "When the Fe(II)-rich water reaches the surface, the Fe(II) reacts with oxygen in the air to make Fe(III) compounds that are sort of like rust. That's the source of the red color."

The microbes are remarkably similar in nature to species found in marine environments, leading to the conclusion that the populations under the glacier are the remnants of a larger population of microbes that once occupied a fjord or sea that received sunlight. Many of these marine lineages likely declined, while others adapted to the changing conditions when the Taylor Glacier advanced, sealing off the system under a thick ice cap.

In the paper, however, Mikucki and her colleagues argue that the creatures that survive under the Taylor Glacier are both far more exotic and far more adaptable than the early explorers thought.

Because the outflow from the glacier follows no clear pattern, it took a number of years to obtain the samples needed to conduct an analysis. Finally Mikucki obtained a sample of an extremely salty and clear liquid for analysis.

"When I started running the chemical analysis on it, there was no oxygen," she said. "That was when this got really interesting; it was a real 'eureka' moment."

Further genetic analysis suggests that of the relatively small numbers of microorganisms found in the brine, "the majority of these organisms are from marine lineages," she said.

In other words, microorganisms more similar to those found in an ocean than on land, but capable of surviving without the food and light sources available in the open ocean.

"The salts associated with these features are marine salts, and given the history of marine water in the dry valleys, it made sense that subglacial microbial communities might retain some of their marine heritage," she added.

This led to the conclusion that the ancestors of the microbes beneath the Taylor Glacier probably lived in the ocean many millions of years ago. When the floor of the Valleys arose more than 1.5 million years ago, a pool of seawater from the fjord that penetrated the area was trapped. The pool was eventually capped by the flow of the glacier.

The briny pond, whatever its size "is a unique sort of time capsule from a period in Earth's history," Mikucki said. "I don't know of another environment quite like this on Earth."

Life below the Taylor Glacier may help scientist address questions about life on "Snowball Earth", the period of geological time when large ice sheets covered the Earth's surface. But it's also a rich laboratory for studying life in other hostile environments, including the subglacial lakes of Antarctica and perhaps even on other icy planets in the solar system such as below the Martian ice caps or in the ice-covered oceans of Jupiter's moon Europa.

Nikki Staab | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>