Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life thrives in porous rock deep beneath the seafloor

08.12.2010
Researchers have found compelling evidence for an extensive biological community living in porous rock deep beneath the seafloor. The microbes in this hidden world appear to be an important source of dissolved organic matter in deep ocean water, a finding that could dramatically change ideas about the ocean carbon cycle.

Matthew McCarthy, associate professor of ocean sciences at the University of California, Santa Cruz, led a team of researchers from several institutions who analyzed the dissolved organic matter in fluids from natural vents on the seafloor and from a borehole that penetrated the basement rock deep beneath the seafloor sediments.

Their results, to be published in the January issue of Nature Geoscience and currently available online, indicate that the dissolved material in those fluids was synthesized by microbes living in the porous basalt rock of the upper oceanic crust. These microbes are "chemoautotrophic," meaning they derive energy from chemical reactions and are completely independent of the sunlight-driven life on the surface of our planet.

Chemoautotrophic microbes (bacteria and archaea) have been found in deep-ocean sediments and at hydrothermal vents, where hot water flows out through newly formed volcanic rock at mid-ocean ridges. The idea that a much larger biological community might exist in habitats within the cooler upper-crustal rock that lies under large areas of the seafloor has been an exciting, but controversial, hypothesis, McCarthy said.

"What is really important about this is the huge size and extent of such systems," he said. "This study provides the strongest evidence yet that a really large biosphere exists in the warm fluids in the porous upper-oceanic crust. It's large not just in area, but in productivity. In the same way that forests and grasslands fix carbon and produce organic matter on land, our data suggest these microbes produce enough organic matter to export carbon to other systems. That's a real expansion of our ideas about the oceanic carbon cycle."

The existence of an extensive "alternate biosphere" beneath the ocean floor may also influence the thinking of astrobiologists about where life might exist elsewhere in our solar system, McCarthy said. Saturn's moon Europa, for example, is thought to have liquid oceans beneath its icy crust, prompting speculation about the possibility of life evolving there.

McCarthy's team found evidence of the hidden microbial ecosystem beneath the seafloor by analyzing carbon isotopes in the organic molecules in their samples. Of the three naturally occurring isotopes of carbon, carbon-12 is the most abundant, and both carbon-12 and the slightly heavier carbon-13 are stable. Carbon-14 is an unstable isotope formed in the upper atmosphere through the action of cosmic rays, and its steady decay is the basis for carbon-dating of organic material.

The ratios of these different isotopes provide telltale clues to the origins of organic molecules and the carbon atoms in them. Carbon-13 analysis, for example, indicates what kind of organisms synthesized the molecules. "Carbon-13 is really useful for looking at the origins of organic matter, because there are distinctive signatures for different sources," McCarthy said. "Chemosynthetic bacteria have wildly different signatures than anything else, and our carbon-13 results match the classic chemosynthetic values."

The team's carbon-14 analysis showed where the carbon in the organic molecules came from. If it came from the carbon in crustal rocks, there would be no carbon-14 at all. Instead, the carbon-14 signature indicated that the carbon came from dissolved inorganic carbon in deep seawater. This inorganic carbon pool consists of carbonate ions formed when carbon dioxide from the atmosphere dissolves in ocean water.

Carbon-14 dating indicated that the carbon in the dissolved organic matter is 11,800 to 14,400 years old--in other words, that's how long ago the carbon now in those organic molecules was absorbed from the atmosphere into the ocean. That's about three times older than the carbon-14 age of the overall pool of dissolved organic matter in the deep ocean. This suggests that water circulates very slowly through the deep microbial habitat in the rocks of the upper crust.

"The observation that this deep biosphere is apparently pumping very old, carbon-14-depleted dissolved organic matter into the deep ocean may be very important to our understanding of biogeochemical cycles," McCarthy said. "The reservoir of dissolved organic matter in the deep ocean is one of the largest active pools of organic carbon in the global carbon cycle, about the same size as the pool of atmospheric carbon dioxide."

The age of the deep-ocean water is used to estimate how quickly it turns over and returns to the surface layers. "If this very old pool of carbon is being mixed in and biasing the measurements, the deep-ocean water may actually be turning over more quickly than we thought," McCarthy said.

To obtain their samples, the researchers used custom-built equipment and a remotely operated deep-sea submersible, the ROV Jason II, from Woods Hole Oceanographic Institution (WHOI). Stainless-steel probes driven into an exposed rock outcrop and a specialized set of deep-sea sampling platforms designed at the University of Washington (UW) enabled them to recover the unprecedented quantities of uncontaminated crustal fluids needed for the analyses. The samples were collected during two expeditions to the Juan de Fuca Ridge system off the coast of Washington and British Columbia.

The key carbon-14 measurements on the recovered organic molecules were done through collaborations with the Lawrence Livermore National Laboratory's accelerator facility and the Keck Carbon Cycle Accelerator facility at UC Irvine. In addition to McCarthy, the coauthors include Steven Beaupré of WHOI; UCSC graduate student Brett Walker; Ian Voparil of Shell International Exploration and Production; Thomas Guilderson of Lawrence Livermore National Laboratory; and Ellen Druffel of UC Irvine. H. Paul Johnson and Tor Bjorkland of the UW School of Oceanography were instrumental in the development and deployment of deep-sea samplers and probes. This research was supported by the National Science Foundation, the University of California, and the Packard Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>