Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there life on Mars?

11.06.2012
A new study reveals that parts of Mars may have been modified by liquid water in recent geologic times, which might indicate more favourable conditions for life on the planet.
Carried out by researchers from the University of Gothenburg, Sweden, in conjunction with German planetary researchers at Wilhelm’s University in Muenster and the Germany Aerospace Center (DLR) in Berlin, the study have now been published in the prestigious journal ICARUS, the International Journal for Solar System Studies.

The surface of Mars displays a diverse landscape, and a new study shows that large areas of the northern hemisphere have undergone a number of freeze-thaw cycles.

“This process is common in our own Arctic permafrost environments and causes the formation of lobate features on slopes,” says Andreas Johnsson at the University of Gothenburg’s Department of Earth Sciences. “As the Martian landscapes we’re studying feature ground-ice, our interpretation is that liquid water has been available in the ground during thaw periods.”

Gullies formed by water
When the ice melted, the near-surface sediment on the slopes became saturated with the melt water and then slowly began to move downwards on top of the still frozen permafrost table due to gravity.

“You can see these structures in close proximity to what are known as gullies,” says Andreas Johnsson.
The researchers have long suspected that the gullies, which are geologically young landforms, were formed by liquid water.

“Our question was: if liquid water can occur in local niches, predominantly in impact craters, where most of the gullies are to be found, then shouldn’t we see more signs of thawing and the effects of melt water, along the lines of those in our own Arctic environments?”
In the study, which focuses on the northern hemisphere of Mars, the researchers could see lobate features in close proximity to the gullies. Morphologically similar landforms are also to be found in Arctic areas on Earth, and are known as solifluction lobes.

Comparisons with Earth
In the study, the researchers compared Martian landforms with known solifluction landforms in Svalbard.

“Unlike local ice-melting, as suggested by the ravines, the solifluction lobes indicate that there has probably been more widespread thawing of the Martian landscape,” says Andreas Johnsson. “Consequently there must have been liquid water in large areas, which is interesting for our understanding of past climates.”

The results show either that the climate models for Mars must be fine-tuned to include the climatic conditions required by these features, or that there is another factor at play.
Since the Mars Phoenix Lander mission it has been confirmed that the ground contains salts that can affect the freezing point of water on Mars so that it can be liquid even at sub-zero temperatures and low atmospheric pressure.

“We don’t yet know which of these scenarios is more likely − it could be a combination of the two.”
Searching for life on Mars
Transient liquid water is also of considerable interest when looking for favourable environments for life on Mars. Research has shown that organisms can survive for long periods without water in cold environments on Earth, but that there must be access to water at times.
“On Mars, these landforms may suggest that the ice melts during favourable “warm” periods and the ground is temporarily saturated with water before freezing again when a new cold period comes along. This process is probably seasonal and linked to periods when Mars’ polar axis was more tilted. Given the varying climate on Mars, it is possible that these conditions are recurring. It has to be emphasized, however, that process-landform interpretation can be problematic due to convergence, which means that different sets of processes may result in similar-looking landforms. Nevertheless, based on comparative morphology, morphometry relationships and the proximity to gullies make these landforms consistent with solifluction”.

The study has been published in the prestigious journal ICARUS, the International Journal for Solar System Studies.

Bibliographic data
Titel: Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard
Authors: Johnssona,Reiss,Hauber,Zanetti,Hiesinger,Johanssona,Olvmo
Journal: Icarus, Volume 218, Issue 1

For more information, please contact: Andreas Johnsson, doctoral student in physical geography, Department of Geosciences, University of Gothenburg
Telephone: +46 (0)31 786 2943
Mobile: +46 (0)725 205 088
E-mail: andreasj@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.sciencedirect.com/science/article/pii/S0019103511005021

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>