Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Life in Earth’s primordial sea was starved for sulfate


The Earth’s ancient oceans held much lower concentrations of sulfate—a key biological nutrient—than previously recognized, according to research published this week in Science.

The findings paint a new portrait of our planet’s early biosphere and primitive marine life. Organisms require sulfur as a nutrient, and it plays a central role in regulating atmospheric chemistry and global climate.

Research vessel on Lake Matano, Indonesia. Sean Crowe, University of British Columbia.

“Our findings are a fraction of previous estimates, and thousands of time lower than current seawater levels,” says Sean Crowe, a lead author of the study and an assistant professor in the Departments of Microbiology and Immunology, and Earth, Ocean and Atmospheric Sciences at the University of British Columbia.

“At these trace amounts, sulfate would have been poorly mixed and short-lived in the oceans—and this sulfate scarcity would have shaped the nature, activity and evolution of early life on Earth.”

... more about:
»Archean »Lake »Science »isotope »levels »marine life »oceans »sulfate »sulfur

UBC, University of Southern Denmark, CalTech, University of Minnesota Duluth, and University of Maryland researchers used new techniques and models to calibrate fingerprints of bacterial sulfur metabolisms in Lake Matano, Indonesia — a modern lake with chemistry similar to Earth’s early oceans.

Measuring these fingerprints in rocks older than 2.5 billion years, they discovered sulfate 80 times lower than previously thought.

The more sensitive fingerprinting provides a powerful tool to search for sulfur metabolisms deep in Earth’s history or on other planets like Mars.


Previous research has suggested that Archean sulfate levels were as low as 200 micromolar— concentrations at which sulfur would still have been abundantly available to early marine life.

The new results indicate levels were likely less than 2.5 micromolar, thousands of times lower than today.

What the researchers did

Researchers used state-of-the-art mass spectrometric approaches developed at California Institute of Technology to demonstrate that microorganisms fractionate sulfur isotopes at concentrations orders of magnitude lower than previously recognized.

They found that microbial sulfur metabolisms impart large fingerprints even when sulfate is scarce.

The team used the techniques on samples from Lake Matano, Indonesia—a sulfate-poor modern analogue for the Earth’s Archean oceans.

”New measurements in these unique modern environments allow us to use numerical models to reconstruct ancient ocean chemistry with unprecedented resolution” says Sergei Katsev an Associate Professor at the Large Lakes Observatory, University of Minnesota Duluth.

Using models informed by sulfate isotope fractionation in Lake Matano, they established a new calibration for sulfate isotope fractionation that is extensible to the Earth’s oceans throughout history. The researchers then reconstructed Archean seawater sulfate concentrations using these models and an exhaustive compilation of sulfur isotope data from Archean sedimentary rocks.

Crowe initiated the research while a post-doctoral fellow with Donald Canfield at the University of Southern Denmark.

UBC Science Media Contacts
Chris Balma
UBC Science
604.202.5047 (c)

Silvia Moreno-Garcia
Coordinator, Communications

Sean Crowe | EurekAlert!
Further information:

Further reports about: Archean Lake Science isotope levels marine life oceans sulfate sulfur

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>