Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What lies beneath – scientists discover giant trench under Antarctic Ice

14.01.2014
A massive ancient subglacial trough – deeper than the Grand Canyon - has been discovered by a team of UK experts.

The research involved scientists from Newcastle University, the University of Bristol’s Glaciology Centre, the British Antarctic Survey and the universities of Edinburgh, Exeter, and York. They charted the Ellsworth Subglacial Highlands – an ancient mountain range buried beneath several kilometres of Antarctic ice - by combining data from satellites and ice-penetrating radars towed behind skidoos and on-board small aircraft.


Antarctic field camp located on the ice sheet surface directly over the hidden Ellsworth Trough. The mountains in the background, some 70 km distant, are the Ellsworth Mountains. A similar mountainous landscape lies buried beneath the present-day ice sheet.

The researchers spent three seasons investigating and mapping the region in West Antarctica, uncovering a massive subglacial valley up to 3 kilometres deep, more than 300 kilometres long and up to 25 kilometres across. In places, the floor of this valley is more than 2000 metres below sea level.

The mountain range and deep valley were carved millions of years ago by a small icefield similar to those of the present-day Antarctic Peninsula, or those of Arctic Canada and Alaska.

The team’s analysis has provided an unprecedented insight into the extent, thickness and behaviour of this ancient icefield, and the configuration and behaviour of the early West Antarctic Ice Sheet. The subglacial landscape shows where and how the West Antarctic Ice Sheet originated and grew. It also provides important clues about the size and shape of the ice sheet in West Antarctica in a warmer global climate.

The findings are published in the latest edition of the Geological Society of America Bulletin. The paper’s lead author Dr Neil Ross from Newcastle University said: “The discovery of this huge trough, and the characterisation of the surrounding mountainous landscape, was incredibly serendipitous.

The lecturer in Physical Geography added: We had acquired ice penetrating radar data from both ends of this huge hidden valley, but we had no information to tell us what was in between. Satellite data was used to fill the gap, because despite being covered beneath several kilometres of ice, the valley is so vast that it can be seen from space.

“To me, this just goes to demonstrate how little we still know about the surface of our own planet. The discovery and exploration of hidden, previously-unknown landscapes is still possible and incredibly exciting, even now.”

http://gsabulletin.gsapubs.org/content/126/1-2/3.abstract

Full bibliographic information

Neil Ross, Tom A. Jordan, Robert G. Bingham, Hugh F.J. Corr, Fausto Ferraccioli, Anne Le Brocq, David M. Rippin, Andrew P. Wright, and Martin J. Siegert
The Ellsworth Subglacial Highlands: Inception and retreat of the West Antarctic Ice Sheet

Geological Society of America Bulletin, January 2014, v. 126, no. 1-2, p. 3-15, doi:10.1130/B30794.1

Newcastle University Press | alfa
Further information:
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>