Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LiDAR Technology Reveals Faults Near Lake Tahoe

Results of a new U.S. Geological Survey study conclude that faults west of Lake Tahoe, Calif., referred to as the Tahoe-Sierra frontal fault zone, pose a substantial increase in the seismic hazard assessment for the Lake Tahoe region of California and Nevada, and could potentially generate earthquakes with magnitudes ranging from 6.3 to 6.9. A close association of landslide deposits and active faults also suggests that there is an earthquake-induced landslide hazard along the steep fault-formed range front west of Lake Tahoe.
Using a new high-resolution imaging technology, known as bare-earth airborne LiDAR (Light Detection And Ranging), combined with field observations and modern geochronology, USGS scientists, and their colleagues from the University of Nevada, Reno; the University of California, Berkeley; and the U.S. Army Corps of Engineers, have confirmed the existence of previously suspected faults. LiDAR imagery allows scientists to "see" through dense forest cover and recognize earthquake faults that are not detectable with conventional aerial photography.

"This study is yet one more stunning example of how the availability of LiDAR information to precisely and accurately map the shape of the solid Earth surface beneath vegetation is revolutionizing the geosciences," said USGS Director Marcia McNutt. "From investigations of geologic hazards to calculations of carbon stored in the forest canopy to simply making the most accurate maps possible, LiDAR returns its investment many times over."

Motion on the faults has offset linear moraines (the boulders, cobbles, gravel, and sand deposited by an advancing glacier) providing a record of tectonic deformation since the moraines were deposited. The authors developed new three-dimensional techniques to measure the amount of tectonic displacement of moraine crests caused by repeated earthquakes. Dating of the moraines from the last two glaciations in the Tahoe basin, around 21 thousand and 70 thousand years ago, allowed the study authors to calculate the rates of tectonic displacement.

"Although the Tahoe-Sierra frontal fault zone has long been recognized as forming the tectonic boundary between the Sierra Nevada to the west, and the Basin and Range Province to the east, its level of activity and hence seismic hazard was not fully recognized because dense vegetation obscured the surface expressions of the faults," said USGS scientist and lead author, James Howle. "Using the new LiDAR technology has improved and clarified previous field mapping, has provided visualization of the surface expressions of the faults, and has allowed for accurate measurement of the amount of motion that has occurred on the faults. The results of the study demonstrate that the Tahoe-Sierra frontal fault zone is an important seismic source for the region."

An abstract of the paper, "Airborne LiDAR analysis and geochronology of faulted glacial moraines in the Tahoe-Sierra frontal fault zone reveal substantial seismic hazards in the Lake Tahoe region, California-Nevada USA," published in the "Geological Society of America Bulletin" is available online. Contact GSA for a copy of the full article.

A video is available online showing a visual example of how airborne LiDAR (Light D etection And Ranging) imagery penetrates dense forest cover to reveal an active fault line not detectable with conventional aerial photography.

Kea Giles | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>