Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CO2 levels rising in troposphere over rural areas

Spanish researchers have measured CO2 levels for the past three years in the troposphere (lower atmosphere) over a sparsely inhabited rural area near Valladolid. The results, which are the first of their kind in the Iberian Peninsula, show that the levels rose "significantly" between 2002 and 2005.

Over recent years, physicists and meteorologists have been trying to find out about carbon dioxide (CO2) levels, and how these have evolved in the troposphere over various urban and rural areas around the planet. Now a scientific team from the University of Valladolid (UVA) has published the first – and to date the only – measurements for the Iberian Peninsula.

The study, published in the latest issue of the journal Theoretical and Applied Climatology and led by Mª Luisa Sánchez, a researcher from the UVA's Atmospheric Pollution Group, shows that CO2 levels increased by 8 ppm (parts per million) between 2002 and 2005. A broader study has led the researchers to predict "an annual increase of 3 ppm" in the study area.

"The levels of this gas in uncontaminated atmospheres depend on emissions from the ground, as well as plant respiration and photosynthesis, but also on developments in the atmosphere as a whole, which may facilitate or inhibit the dispersal of this substance", Isidro Pérez, one of the authors and a researcher from the UVA's Applied Physics Department, tells SINC.

The scientists chose a flat, uncontaminated rural area located 840 metres above sea level and 30 kilometres from the city of Valladolid. Daily and seasonal cycles related to low level jet streams were also identified, using a turbulence indicator, the so-called Richardson number.

The increase in carbon dioxide was factored in with other characteristics observed in uncontaminated areas, such as differences between day and night. "This contrast, which is especially significant in spring, can be explained by plant respiration and photosynthesis processes, and by the turbulence or stratification of the atmosphere", explains Pérez.

Other characteristics of the troposphere

Data from a RASS sodar (a device that measures vertical temperature and wind profiles and that has a larger range than conventional meteorological towers) allowed the team to classify wind speed too. These data made it possible to obtain profiles that showed "the existence of low-level jet streams at night time, which were especially low in summer, when they were located at a maximum height of between 200 and 300 metres", says the researcher.

The physicists also analysed the thermal structure of the lower atmosphere, and found "significant daytime cold advections (horizontal transportation of heat by an air current) in springtime, with temperature differences of 4.5ºC between the highest and lowest wind speeds", adds Pérez.


Pérez, Isidro A.; Sánchez, María Luisa; García, María Ángeles; de Torre, Beatriz. "Daily and annual cycle of CO2 concentration near the surface depending on boundary layer structure at a rural site in Spain" Theoretical and Applied Climatology 98(3-4): 269-277, octubre de 2009.

SINC | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>