Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More CO2 leads to less clouds

04.09.2012
A new feedback mechanism operating between vegetation and cloud formation could enhance the climate change

The warmer the air, the more water can evaporate: a simple relationship familiar to us from everyday life. Researchers from Germany and the Netherlands have now established that this not always the case: although an increase in the greenhouse gas CO2 makes the climate warmer, it also allows less water to evaporate.


Presumably fewer clouds will develop in the future over the grass: The increase in carbon dioxide in the atmosphere causes an evaporation decrease of plants. As a result fewer cumulus clouds form, more sunlight reaches the ground - the climate change intensifies.

Picture: Bart van Stratum

Plants, with their billions of tiny leaf pores, are the cause of this apparent contradiction. They influence the gas and moisture content of the air around them. Using new calculations of an atmospheric model, the researchers found that this sets in motion a cascade of processes, finally resulting in global warming.

“We wanted to know how the foreseeable rise in CO2 would affect cloud formation in temperate climate zones and what part the vegetation plays in this,” says Jordi Vilà-Guerau de Arellano from the University of Wageningen in the Netherlands. Working with colleagues from the Max Planck Institutes for Chemistry and Meteorology, the geophysicists made use of, for the first time, a computer model that takes account of the soil, water cycle, atmosphere and growth processes of plants. The model results highlight how local and daily variable processes, through turbulence, can influence the atmosphere on larger scales.

The scientists simulated three scenarios for their analysis: a doubling of the CO2 in the atmosphere from the current 0.038% to 0.075%, an increase in the average global temperature by two degrees Celsius and a combination of both. The calculations represent the conditions expected for the year 2100 and compared to 2003 values based on scenarios from the Intergovernmental Panel on Climate Change (IPCC).

The researchers established that some land-vegetation-atmosphere exchange processes respond more strongly to increasing CO2 and climate change than others. Doubling the CO2 in the atmosphere actually starts a cascade of processes beginning with the physiological response of plants to the higher CO2 concentration. The trigger of the chain of events is that plants regulate the exchange of water vapor and carbon dioxide with the atmosphere by the opening and closing of the leaf pores - the stomata.

At higher CO2 concentrations plants close their stomata

The cascade starts harmless: in the double CO2 scenario, the stomata close earlier since the plants can assimilate the necessary CO2 for photosynthesis more optimally. As a result, less moisture is evaporated by the plants and there is overall less water vapour introduced into the atmosphere.

Consequently, fewer cumulus clouds are formed, which means that the Earth's surface becomes warmer, as the sun's rays hit it directly and are not reflected by clouds. Then, warmer air creates more turbulence in the atmosphere near the surface, and in consequence there is more heat and less moisture transported. The earth and the atmosphere thus heat up through the plants' response to the higher CO2 levels.

The researchers have thus found another feedback mechanism in the climate system, a self-reinforcing process. This feedback mechanism did not develop in the second scenario, in which the atmosphere only warms by two degrees Celsius without the effect of higher concentrations of the greenhouse gas CO2 on plants.

Evaporation will fall by 15%

The researchers then simulated a third scenario in which they increased both the CO2 levels and the temperature. “Positive effects on cloud formation include the ability of the warmer atmosphere to hold more water or increase the growth of biomass. However, they are only partly able to compensate for the reduction in cloud formation,” according to Jordi Vilà. “Evaporation will fall by 15%. The atmospheric boundary layer dries out, and fewer clouds form,” adds Jos Lelieveld, Director at the Max Planck Institute for Chemistry in Mainz.

The study thus shows that diminished evaporation from plants has a direct impact on cloud formation. Chiel van Heerwaarden from the Max Planck Institute for Meteorology emphasizes: “The calculations show an important feedback mechanism between the vegetation and physical climate processes.” In future, the researchers want to extend their analysis to the Amazon to test the effects of increasing CO2 levels on tropical regions.

SB/NW

Original Publication

Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere
Jordi Vilà-Guerau de Arellano, Chiel C. van Heerwaarden und Jos Lelieveld
Nature Geoscience, 2. September 2012

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>