Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More CO2 leads to less clouds

04.09.2012
A new feedback mechanism operating between vegetation and cloud formation could enhance the climate change

The warmer the air, the more water can evaporate: a simple relationship familiar to us from everyday life. Researchers from Germany and the Netherlands have now established that this not always the case: although an increase in the greenhouse gas CO2 makes the climate warmer, it also allows less water to evaporate.


Presumably fewer clouds will develop in the future over the grass: The increase in carbon dioxide in the atmosphere causes an evaporation decrease of plants. As a result fewer cumulus clouds form, more sunlight reaches the ground - the climate change intensifies.

Picture: Bart van Stratum

Plants, with their billions of tiny leaf pores, are the cause of this apparent contradiction. They influence the gas and moisture content of the air around them. Using new calculations of an atmospheric model, the researchers found that this sets in motion a cascade of processes, finally resulting in global warming.

“We wanted to know how the foreseeable rise in CO2 would affect cloud formation in temperate climate zones and what part the vegetation plays in this,” says Jordi Vilà-Guerau de Arellano from the University of Wageningen in the Netherlands. Working with colleagues from the Max Planck Institutes for Chemistry and Meteorology, the geophysicists made use of, for the first time, a computer model that takes account of the soil, water cycle, atmosphere and growth processes of plants. The model results highlight how local and daily variable processes, through turbulence, can influence the atmosphere on larger scales.

The scientists simulated three scenarios for their analysis: a doubling of the CO2 in the atmosphere from the current 0.038% to 0.075%, an increase in the average global temperature by two degrees Celsius and a combination of both. The calculations represent the conditions expected for the year 2100 and compared to 2003 values based on scenarios from the Intergovernmental Panel on Climate Change (IPCC).

The researchers established that some land-vegetation-atmosphere exchange processes respond more strongly to increasing CO2 and climate change than others. Doubling the CO2 in the atmosphere actually starts a cascade of processes beginning with the physiological response of plants to the higher CO2 concentration. The trigger of the chain of events is that plants regulate the exchange of water vapor and carbon dioxide with the atmosphere by the opening and closing of the leaf pores - the stomata.

At higher CO2 concentrations plants close their stomata

The cascade starts harmless: in the double CO2 scenario, the stomata close earlier since the plants can assimilate the necessary CO2 for photosynthesis more optimally. As a result, less moisture is evaporated by the plants and there is overall less water vapour introduced into the atmosphere.

Consequently, fewer cumulus clouds are formed, which means that the Earth's surface becomes warmer, as the sun's rays hit it directly and are not reflected by clouds. Then, warmer air creates more turbulence in the atmosphere near the surface, and in consequence there is more heat and less moisture transported. The earth and the atmosphere thus heat up through the plants' response to the higher CO2 levels.

The researchers have thus found another feedback mechanism in the climate system, a self-reinforcing process. This feedback mechanism did not develop in the second scenario, in which the atmosphere only warms by two degrees Celsius without the effect of higher concentrations of the greenhouse gas CO2 on plants.

Evaporation will fall by 15%

The researchers then simulated a third scenario in which they increased both the CO2 levels and the temperature. “Positive effects on cloud formation include the ability of the warmer atmosphere to hold more water or increase the growth of biomass. However, they are only partly able to compensate for the reduction in cloud formation,” according to Jordi Vilà. “Evaporation will fall by 15%. The atmospheric boundary layer dries out, and fewer clouds form,” adds Jos Lelieveld, Director at the Max Planck Institute for Chemistry in Mainz.

The study thus shows that diminished evaporation from plants has a direct impact on cloud formation. Chiel van Heerwaarden from the Max Planck Institute for Meteorology emphasizes: “The calculations show an important feedback mechanism between the vegetation and physical climate processes.” In future, the researchers want to extend their analysis to the Amazon to test the effects of increasing CO2 levels on tropical regions.

SB/NW

Original Publication

Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere
Jordi Vilà-Guerau de Arellano, Chiel C. van Heerwaarden und Jos Lelieveld
Nature Geoscience, 2. September 2012

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
17.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>