Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lazy microbes are key for soil carbon and nitrogen sequestration

01.12.2015

Social interactions in microbial communities could explain how much carbon and nitrogen gets stored in soils—providing new insight for climate change research.

The world's soils store on the order of 2500 gigatons of carbon, which is three times the amount in the atmosphere (or equivalent to 9170 gigatons of CO2). Yet the mechanisms behind this storage are not completely understood.


Conceptual image of the individual-based computer model used to simulate microbial community dynamics and their feedback to soil carbon and nitrogen cycles

Christina Kaiser | IIASA


Experimental research for analysing soil carbon and nitrogen turnover: Christina Kaiser digging soil cores in Greenland.

Andreas Richter

A new study, published in the journal Nature Communications, shows that lazy, or “cheater” microbes, which rely on those around them to make enzymes for digesting plant material lead to the build-up of organic material in soil by regulating the rate of decomposition and increasing the amount of microbial remains in the soil.

The study thereby introduces a new possible control mechanism—enabled by social interactions among individual microbes—that may help to explain the massive reservoir of carbon and other nutrients in soil.

Soil microbes decompose plant and other organic matter, in the process releasing carbon dioxide and soluble inorganic nitrogen, such as ammonium or nitrate. Yet there is always some leftover organic material, consisting of carbon, nitrogen, and minerals, which remains sequestered in the soil, somehow prevented from further decomposition.

That remaining organic material is what makes up the huge carbon and nitrogen stores in soil.

For a long time, scientists believed that microbes simply could not decompose some complex molecular structures, and that this would be one of the reasons for the accumulation of not-yet-decomposed organic material in soils. Recent experiments, however, show that, in fact, nearly everything could be decomposed. The question is, if microbes have the potential to decompose nearly everything, why do they stop short?

Although there are very powerful microbial decomposers out there, some microbes do the opposite – nothing. They rely on their neighbors to release the enzymes that start the decomposition process, breaking down large chunks of material into smaller pieces that the microbes can absorb. By relying on their neighbors for this first step of the digestion process, the cheating microbes save energy that would go into enzyme production.

“It’s a strategy we see all over nature,” explains IIASA Evolution and Ecology Program Director Ulf Dieckmann. “Cheaters are everywhere—across many contexts, it’s an evolutionarily successful strategy to save resources and thus become more competitive.”

The new study, by researchers at the University of Vienna and the International Institute of Applied System Analysis explores the role of microbial cheaters for soil carbon and nitrogen cycling using a computer model. Their results show that the presence of cheating microbes slows down the decomposition of organic material, so that it accumulates in soil. In particular, the presence of cheaters increases the accumulation of nitrogen-rich microbial material in the soil—essentially the undecayed remains of dead microbes.

“This happens because the presence of microbial cheaters ultimately reduces the total amount of enzymes produced by the microbial community, while the total amount of microbial biomass stays about the same” explains University of Vienna ecologist and IIASA guest researcher Christina Kaiser, who led the study.

This brings down the number of enzymes capable of decomposing dead microbes, per newly formed microbial remains, which consequently accumulate in the soil.

“Since microbial remains include more nitrogen than the original plant material, this leads not only to a build-up of organic matter, but specifically to a build-up of nitrogen in the soil compared to carbon,” says University of Vienna ecologist Andreas Richter, co-author of the study.

The research also shows that the presence of microbial cheaters may help the soil system to react more flexibly to changes in environmental conditions. “If the efficiency of the extracellular enzymes increases, for example, with an increase in temperature, our study shows that the number of lazy microbes also increases, so that the overall speed of decomposition remains about the same,” says IIASA researcher Oskar Franklin, who also contributed to the study.

“We used to think that those cheaters were useless, but in fact, they may play a key role regulating the speed of decomposition,” says Franklin. “In addition, they increase the efficiency with which the microbial community as a whole uses its resources. That leads to more microbial biomass being produced compared to the amount of dead plant material—which contributes to the build-up of organic material in the soil.”

The study relied on a model that Kaiser developed during a postdoctoral fellowship at IIASA.

“The unique thing about this model is that it simulates the life and death of individual microorganisms in a tiny space, and can encompass the positive and negative influences between neighboring microbes,” says Kaiser. “In contrast to a traditional soil decomposition model, our model can elucidate mechanisms that depend on social dynamics that emerge on the microbial community level, but are driven by individual interactions among microbes competing for food and space at the smallest scale.”

“Soil decomposition is a complex process that depends on many different factors. It’s not just the actions of the cheating microbes alone that lead to the self-regulation of decomposition we observed, but their interactions and feedbacks with microbial enzyme producers within a complex microbial system,” says Dieckmann.

Reference
Kaiser C, Franklin O, Richter A, Dieckmann U (2015). Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nature Communications 1 December 2015, doi:10.1038/ncomms9960

MSc Katherine Leitzell | idw - Informationsdienst Wissenschaft
Further information:
http://www.iiasa.ac.at

Further reports about: Applied IIASA enzyme microbes nitrogen organic material plant material soil carbon soils

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>