Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lava Formations in Western U.S. Linked to Rip in Giant Slab of Earth

17.02.2012
Like a stream of air shooting out of an airplane’s broken window to relieve cabin pressure, scientists at Scripps Institution of Oceanography at UC San Diego say lava formations in eastern Oregon are the result of an outpouring of magma forced out of a breach in a massive slab of Earth. Their new mechanism explaining how such a large volume of magma was generated is published in the Feb. 16 issue of the journal Nature.

For years scientists who study the processes underlying the planet’s shifting tectonic plates and how they shape the planet have debated the origins of sudden, massive eruptions of lava at the planet’s surface. In several locations around the world, such “flood basalts” are marked by immense formations of volcanic rock. A famous example is India’s Deccan flood basalt, a formation widely viewed as related to the demise of the dinosaurs 65 million years ago.

Such eruptions are thought to typically occur when the head of a mantle plume, a mushroom-shaped upwelling of hot rock rising from deep within the earth’s interior, reaches the surface. Now Scripps postdoctoral researcher Lijun Liu and geophysics professor Dave Stegman have proposed an alternative origin for the volcanic activity of Oregon’s Columbia River flood basalt.

Liu and Stegman argue that around 17 million years ago the tectonic plate that was subducting underneath the western United States began ripping apart, leading to massive outpourings of magma. Their proposed model describes a dynamic rupture lasting two million years—a quick eruption in geological terms— across the so-called Farallon slab, where the rupture spread across 900 kilometers (559 miles) along eastern Oregon and northern Nevada.

“Only with a break of this scale inside the down-going slab can we reach the present day geometry of mantle we see in the area,” said Liu, “and geochemical evidence from the Columbia River lavas can also be explained by our model.”

“When the slab is first opened there’s a little tear, but because of the high pressure underneath, the material is able to force its way through the hole. It’s like in the movies when a window breaks in an airplane that is at high altitude—since the cabin is at higher pressure, everything gets sucked out the window,” said Stegman, an assistant professor with Scripps’ Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics.

Liu and Stegman came upon their new mechanism by attempting to describe how the complicated structure of the earth’s mantle under the western U.S. developed during the past 40 million years. The final state of their model’s time-evolution matches the present day structure as imaged by the USArray, the National Science Foundation’s transportable seismic network of 400 sensor stations leapfrogging across the United States.

“This paper highlights the importance of interdisciplinary efforts in Earth sciences,” Liu added.

The John Miles Fellowship, the Cecil and Ida Green Foundation and the G. Unger Vetlesen Foundation funded the study.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>