Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lava Formations in Western U.S. Linked to Rip in Giant Slab of Earth

17.02.2012
Like a stream of air shooting out of an airplane’s broken window to relieve cabin pressure, scientists at Scripps Institution of Oceanography at UC San Diego say lava formations in eastern Oregon are the result of an outpouring of magma forced out of a breach in a massive slab of Earth. Their new mechanism explaining how such a large volume of magma was generated is published in the Feb. 16 issue of the journal Nature.

For years scientists who study the processes underlying the planet’s shifting tectonic plates and how they shape the planet have debated the origins of sudden, massive eruptions of lava at the planet’s surface. In several locations around the world, such “flood basalts” are marked by immense formations of volcanic rock. A famous example is India’s Deccan flood basalt, a formation widely viewed as related to the demise of the dinosaurs 65 million years ago.

Such eruptions are thought to typically occur when the head of a mantle plume, a mushroom-shaped upwelling of hot rock rising from deep within the earth’s interior, reaches the surface. Now Scripps postdoctoral researcher Lijun Liu and geophysics professor Dave Stegman have proposed an alternative origin for the volcanic activity of Oregon’s Columbia River flood basalt.

Liu and Stegman argue that around 17 million years ago the tectonic plate that was subducting underneath the western United States began ripping apart, leading to massive outpourings of magma. Their proposed model describes a dynamic rupture lasting two million years—a quick eruption in geological terms— across the so-called Farallon slab, where the rupture spread across 900 kilometers (559 miles) along eastern Oregon and northern Nevada.

“Only with a break of this scale inside the down-going slab can we reach the present day geometry of mantle we see in the area,” said Liu, “and geochemical evidence from the Columbia River lavas can also be explained by our model.”

“When the slab is first opened there’s a little tear, but because of the high pressure underneath, the material is able to force its way through the hole. It’s like in the movies when a window breaks in an airplane that is at high altitude—since the cabin is at higher pressure, everything gets sucked out the window,” said Stegman, an assistant professor with Scripps’ Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics.

Liu and Stegman came upon their new mechanism by attempting to describe how the complicated structure of the earth’s mantle under the western U.S. developed during the past 40 million years. The final state of their model’s time-evolution matches the present day structure as imaged by the USArray, the National Science Foundation’s transportable seismic network of 400 sensor stations leapfrogging across the United States.

“This paper highlights the importance of interdisciplinary efforts in Earth sciences,” Liu added.

The John Miles Fellowship, the Cecil and Ida Green Foundation and the G. Unger Vetlesen Foundation funded the study.

Mario Aguilera | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>