Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lava flows reveal clues to magnetic field reversals

30.09.2008
Ancient lava flows are guiding a better understanding of what generates and controls the Earth's magnetic field – and what may drive it to occasionally reverse direction.

The main magnetic field, generated by turbulent currents within the deep mass of molten iron of the Earth's outer core, periodically flips its direction, such that a compass needle would point south rather than north. Such polarity reversals have occurred hundreds of times at irregular intervals throughout the planet's history – most recently about 780,000 years ago – but scientists are still trying to understand how and why.

A new study of ancient volcanic rocks, reported in the Sept. 26 issue of the journal Science, shows that a second magnetic field source may help determine how and whether the main field reverses direction. This second field, which may originate in the shallow core just below the rocky mantle layer of the Earth, becomes important when the main north-south field weakens, as it does prior to reversing, says Brad Singer, a geology professor at the University of Wisconsin-Madison.

Singer teamed up with paleomagnetist Kenneth Hoffman, who has been researching field reversals for over 30 years, to analyze ancient lava flows from Tahiti and western Germany in order to study past patterns of the Earth's magnetic field. The magnetism of iron-rich minerals in molten lava orients along the prevailing field, then becomes locked into place as the lava cools and hardens.

"When the lava flows erupt and cool in the Earth's magnetic field, they acquire a memory of the magnetic field at that time," says Singer. "It's very difficult to destroy that in a lava flow once it's formed. You then have a recording of what the paleofield direction was like on Earth."

Hoffman, of both California Polytechnic State University at San Luis Obispo and UW-Madison, and Singer are focusing on rocks that contain evidence of times that the main north-south field has weakened, which is one sign that the polarity may flip direction. By carefully determining the ages of these lava flows, they have mapped out the shallow core field during multiple "reversal attempts" when the main field has weakened during the past million years.

During those periods of time, weakening of the main field reveals "virtual poles," regions of strong magnetism within the shallow core field. For example, Singer says, "If you were on Tahiti when those eruptions were taking place, your compass needle would point to not the North Pole, not the South Pole, but Australia."

The scientists believe the shallow core field may play a role in determining whether the main field polarity flips while weakened or whether it recovers its strength without reversing. "Mapping this field during transitional states may hold the key to understanding what happens in Earth's core when the field weakens to a point where it can actually reverse," Hoffman says.

Current evidence suggests we are now approaching one of these transitional states because the main magnetic field is relatively weak and rapidly decreasing, he says. While the last polarity reversal occurred several hundred thousand years ago, the next might come within only a few thousand years.

"Right now, historic records show that the strength of the magnetic field is declining very rapidly. From a quick back-of-the-envelope prediction, in 1,500 years the field will be as weak as it's ever been and we could go into a state of polarity reversal," says Singer. "One broad goal of our research is to provide some predictive capability for what could happen and what could be the signs of the next reversal."

Kenneth Hoffman | EurekAlert!
Further information:
http://www.geology.wisc.edu

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>