Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last chance for oasis in China's desert

10.09.2015

Ten percent of the world’s cotton is produced in the Xinjiang region in northwestern China. Irrigating the cotton fields, however, is causing ecological problems. After many years of research, a team of international researchers headed by Prof. Markus Disse at the Technical University of Munich (TUM) has developed a set of recommendations aimed at preserving the local environment.

The Tarim basin in the Xinjiang region of northwestern China is unique. No other natural landscape is located as far from the ocean. It has an extremely dry climate with only around 50 millimeters of rain falling per square kilometer each year – and the majority of this evaporates. Despite these conditions, the Tarim river flows through this desert region, mainly fed by meltwater from high-altitude glaciers.


The Tarim basin in the Xinjiang region of northwestern China

(Photo: TUM)


Sixty to seventy percent of the world’s population of Euphrates Poplar is located in the Tarim basin

(Photo: TUM)

This water is a vital resource for a number of groups including:

  • Around ten million people who live along the banks of the Tarim
  • Local animal and plant species
  • The land surrounding the river

Farmers, however, are diverting the lion’s share of the water to irrigate their cotton fields. "The natural land and water resources in this unique landscape have been ruthlessly exploited over the past 50 years. This has severely damaged the soils and the quality of water in the region," explains Professor Markus Disse from the Chair of Hydrology and River Basin Management at TUM.

As a result, the soils have become increasingly saline. And this is bad news for the farmers. Non-saline soils can support yields of up to eight tons of cotton per hectare whereas soils with medium to high levels of salt can only produce three to four tons per hectare.

Disse has headed the "Sustainable Management of River Oases along the Tarim River" (SuMaRiO) project since 2011. The initiative is funded by Germany’s Federal Ministry of Education and Research (BMBF) and includes researchers from Germany and China.

Largest cotton producing region in China

"Cotton is the lifeblood of most farmers who live in the Tarim basin," says Dr. Christian Rumbaur, employee at the Chair of Hydrology and River Basin Management and coordinator of the German/Chinese project. Forty percent of China’s cotton is produced here. This corresponds to around ten percent of global production.

The lack of rain is what makes the region suitable for cultivating this valuable plant. The cotton fibers need a dry climate to mature properly; in a damper environment, they would be susceptible to fungus. Yet the plants also need a lot of water to grow, and the farmers take this from the river.

Under these conditions, groundwater supplies cannot be regenerated. This is proving a threat to the Euphrates Poplar, which draws water from a depth of up to ten meters. Sixty to seventy percent of the world’s population of this rare tree species are located in the Tarim basin. The forests act as a barrier against the sands from the neighboring Taklamakan desert. Without them, whole roads and fields would disappear under the advancing desert. The forests also help keep down temperatures through evaporation.

Despite these benefits, farmers are cutting down more and more poplars in order to enlarge their fields. Climate change is one of the factors driving this expansion. Snow on the glaciers is melting, causing more water to flow into valley, and this means more water for irrigation.

The fight against desertification

After years of measurements and investigation, the researchers will be presenting their findings at a conference in Xinjiang in September. They will also be unveiling their recommendations for improving water and land management.

The most important points here include:

Reforestation and renaturalization along a strip of land at least 50 to 100 meters wide along both banks of the river. This will allow the groundwater to be replenished during the annual summer flood and will also reduce erosion along the river banks.

Sustainable land use that factors in the different types of soil and their degree of salination. Cultivating the plant Apocynum pictum (a member of the dogbane family) on salinated soils will enable farmers to earn an income from poor soils.

Use of modeling tools to predict the impact of land use and climate scenarios. To this end, the SuMaRiO researchers developed a system that supports decision-making processes by enabling politicians to evaluate the consequences of different farming alternatives based on future changes in climate.

"We hope that this implementation workshop will herald a new era in sustainable land and water management in the region," adds Disse. "This is the only way that we can ensure long-term stability in this part of the world."

Download highresolution pictures: https://mediatum.ub.tum.de/?change_language=en

Publications:

Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model, Patrick Keilholz,Markus Disse and Ümüt Halik, Water 2015, 7, 3040-3056; doi:10.3390/w7063040
Link: http://www.mdpi.com/2073-4441/7/6/3040.

Large-Scale Hydrological Modeling and Decision-Making for Agricultural Water Consumption and Allocation in the Main Stem Tarim River, China
Yang Yu, Markus Disse, Ruide Yu,, Guoan Yu, Lingxiao Sun, Philipp Huttner and Christian Rumbaur, Water 2015, 7(6), 2821-2839; doi:10.3390/w7062821
Link: http://www.mdpi.com/2073-4441/7/6/2821.

Contact:
Prof. Dr.-Ing. Markus Disse
Technical University of Munich
Chair of Hydrology and River Basin Management
Tel + 49.89.289.23916
email: markus.disse@tum.de
http://www.hydrologie.bgu.tum.de

Dr. Christian Rumbaur
Technical University of Munich
Chair of Hydrology and River Basin Management
Tel: +49 89 289 23227
email: christian.rumbaur@tum.de

Weitere Informationen:

http://go.tum.de/067655 The press-release online

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Further reports about: GLACIERS Management River cotton desert farmers forests future changes in climate land use soils

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>