Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last chance for oasis in China's desert

10.09.2015

Ten percent of the world’s cotton is produced in the Xinjiang region in northwestern China. Irrigating the cotton fields, however, is causing ecological problems. After many years of research, a team of international researchers headed by Prof. Markus Disse at the Technical University of Munich (TUM) has developed a set of recommendations aimed at preserving the local environment.

The Tarim basin in the Xinjiang region of northwestern China is unique. No other natural landscape is located as far from the ocean. It has an extremely dry climate with only around 50 millimeters of rain falling per square kilometer each year – and the majority of this evaporates. Despite these conditions, the Tarim river flows through this desert region, mainly fed by meltwater from high-altitude glaciers.


The Tarim basin in the Xinjiang region of northwestern China

(Photo: TUM)


Sixty to seventy percent of the world’s population of Euphrates Poplar is located in the Tarim basin

(Photo: TUM)

This water is a vital resource for a number of groups including:

  • Around ten million people who live along the banks of the Tarim
  • Local animal and plant species
  • The land surrounding the river

Farmers, however, are diverting the lion’s share of the water to irrigate their cotton fields. "The natural land and water resources in this unique landscape have been ruthlessly exploited over the past 50 years. This has severely damaged the soils and the quality of water in the region," explains Professor Markus Disse from the Chair of Hydrology and River Basin Management at TUM.

As a result, the soils have become increasingly saline. And this is bad news for the farmers. Non-saline soils can support yields of up to eight tons of cotton per hectare whereas soils with medium to high levels of salt can only produce three to four tons per hectare.

Disse has headed the "Sustainable Management of River Oases along the Tarim River" (SuMaRiO) project since 2011. The initiative is funded by Germany’s Federal Ministry of Education and Research (BMBF) and includes researchers from Germany and China.

Largest cotton producing region in China

"Cotton is the lifeblood of most farmers who live in the Tarim basin," says Dr. Christian Rumbaur, employee at the Chair of Hydrology and River Basin Management and coordinator of the German/Chinese project. Forty percent of China’s cotton is produced here. This corresponds to around ten percent of global production.

The lack of rain is what makes the region suitable for cultivating this valuable plant. The cotton fibers need a dry climate to mature properly; in a damper environment, they would be susceptible to fungus. Yet the plants also need a lot of water to grow, and the farmers take this from the river.

Under these conditions, groundwater supplies cannot be regenerated. This is proving a threat to the Euphrates Poplar, which draws water from a depth of up to ten meters. Sixty to seventy percent of the world’s population of this rare tree species are located in the Tarim basin. The forests act as a barrier against the sands from the neighboring Taklamakan desert. Without them, whole roads and fields would disappear under the advancing desert. The forests also help keep down temperatures through evaporation.

Despite these benefits, farmers are cutting down more and more poplars in order to enlarge their fields. Climate change is one of the factors driving this expansion. Snow on the glaciers is melting, causing more water to flow into valley, and this means more water for irrigation.

The fight against desertification

After years of measurements and investigation, the researchers will be presenting their findings at a conference in Xinjiang in September. They will also be unveiling their recommendations for improving water and land management.

The most important points here include:

Reforestation and renaturalization along a strip of land at least 50 to 100 meters wide along both banks of the river. This will allow the groundwater to be replenished during the annual summer flood and will also reduce erosion along the river banks.

Sustainable land use that factors in the different types of soil and their degree of salination. Cultivating the plant Apocynum pictum (a member of the dogbane family) on salinated soils will enable farmers to earn an income from poor soils.

Use of modeling tools to predict the impact of land use and climate scenarios. To this end, the SuMaRiO researchers developed a system that supports decision-making processes by enabling politicians to evaluate the consequences of different farming alternatives based on future changes in climate.

"We hope that this implementation workshop will herald a new era in sustainable land and water management in the region," adds Disse. "This is the only way that we can ensure long-term stability in this part of the world."

Download highresolution pictures: https://mediatum.ub.tum.de/?change_language=en

Publications:

Effects of Land Use and Climate Change on Groundwater and Ecosystems at the Middle Reaches of the Tarim River Using the MIKE SHE Integrated Hydrological Model, Patrick Keilholz,Markus Disse and Ümüt Halik, Water 2015, 7, 3040-3056; doi:10.3390/w7063040
Link: http://www.mdpi.com/2073-4441/7/6/3040.

Large-Scale Hydrological Modeling and Decision-Making for Agricultural Water Consumption and Allocation in the Main Stem Tarim River, China
Yang Yu, Markus Disse, Ruide Yu,, Guoan Yu, Lingxiao Sun, Philipp Huttner and Christian Rumbaur, Water 2015, 7(6), 2821-2839; doi:10.3390/w7062821
Link: http://www.mdpi.com/2073-4441/7/6/2821.

Contact:
Prof. Dr.-Ing. Markus Disse
Technical University of Munich
Chair of Hydrology and River Basin Management
Tel + 49.89.289.23916
email: markus.disse@tum.de
http://www.hydrologie.bgu.tum.de

Dr. Christian Rumbaur
Technical University of Munich
Chair of Hydrology and River Basin Management
Tel: +49 89 289 23227
email: christian.rumbaur@tum.de

Weitere Informationen:

http://go.tum.de/067655 The press-release online

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Further reports about: GLACIERS Management River cotton desert farmers forests future changes in climate land use soils

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>